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Time-dependent drives hold promise for realizing non-equilibrium many-body 
phenomena that are absent in undriven systems1–3. Yet, drive-induced heating 
normally destabilizes the systems4,5, which can be parametrically suppressed in  
the high-frequency regime by using periodic (Floquet) drives6,7. It remains largely 
unknown to what extent highly controllable quantum simulators can suppress 
heating in non-periodically driven systems. Here, using the 78-qubit superconducting 
quantum processor, Chuang-tzu 2.0, we report the experimental observation of 
long-lived prethermal phases in many-body systems with tunable heating rates, 
driven by structured random protocols, characterized by n-multipolar temporal 
correlations. By measuring both the particle imbalance and subsystem entanglement 
entropy, we monitor the entire heating process over 1,000 driving cycles and observe 
the existence of the prethermal plateau. The prethermal lifetime is ‘doubly tunable’: 
one way by driving frequency, the other way by multipolar order; it grows algebraically 
with the frequency with the universal scaling exponent 2n + 1. Using quantum- 
state tomography on different subsystems, we demonstrate a non-uniform spatial 
entanglement distribution and observe a crossover from area-law to volume-law 
entanglement scaling. With 78 qubits and 137 couplers in a two-dimensional 
configuration, the entire far-from-equilibrium heating dynamics are beyond the  
reach of simulation using tensor-network numerical techniques. Our work highlights 
superconducting quantum processors as a powerful platform for exploring universal 
scaling laws and non-equilibrium phases of matter in driven systems in regimes where 
classical simulation faces formidable challenges.

Periodically driven (Floquet) systems can host far-from-equilibrium 
phenomena that are absent in thermal equilibrium8. Prominent exam-
ples include the discrete-time crystals1–3, Floquet topological matter9,10 
and dynamical phase transitions11,12. Periodic drives have also been 
widely used for Floquet engineering of many-body interactions13–15  
and mitigating environment-induced decoherence16,17, serving as a 
robust and versatile approach to stabilize and control modern quan-
tum simulators18,19. Explorations of non-periodic driving have surged 

in recent years, with rich discoveries of non-equilibrium phenomena 
beyond the Floquet lore20–24. For instance, quasi-periodic and struc-
tured random drives can lead to the appearance of discrete-time 
quasi-crystals25–28 and time rondeau crystals29, notably enriching the 
possible forms of temporal order in non-equilibrium settings.

Owing to the lack of energy conservation, generic time-dependent 
many-body systems are inherently susceptible to heating, eventu-
ally ending in a featureless infinite-temperature state4,5, where the 
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subsystem entanglement entropy also reaches its maximum—the Page 
value30. This heating effect thus poses a fundamental challenge for 
utilizing large-scale quantum simulators and stabilizing sought-after 
phases, especially over long timescales. In Floquet systems, heating 
can be suppressed by many-body localization, induced via efficiently 
strong spatial disorder31,32. In clean systems, however, heating can also 
be exponentially suppressed by using high-frequency drives6,7, leading 
to the transient but long-lived prethermal regime before the eventual 
heat death33–35. In contrast, stabilizing non-periodically driven systems 
is a notoriously difficult task, especially when the driving protocol 
involves temporal randomness. This typically opens deleterious energy 
absorption channels, which even many-body localization cannot pre-
vent, and thus heating occurs swiftly.

Here we experimentally demonstrate the existence of a long-lived, 
doubly tunable prethermal regime on a quantum simulator driven 
by random but structured protocols, with a universal degree of tun-
ability in the heating rate. We use a superconducting quantum proces-
sor, Chuang-tzu 2.0, as shown in Fig. 1, that involves 78 qubits and 137 
couplers. Leveraging the precise control and flexibility of this device,  
we accurately implement stable long-term drives and perform large- 
scale analogue quantum simulations of a two-dimensional hard-core  
Bose–Hubbard system.

Furthermore, we implement a family of structured random protocols, 
known as random multipolar driving (RMD)22,36. As illustrated in Fig. 1b, 
the protocol involves two elementary evolution operators Û+ and Û−, 
generated by two Hamiltonians Ĥ± that differ in the site potential along 
the y axis (Fig. 1b,c). Starting from an initial density-wave state, the 
random modulation of Û± destabilizes the system and hence induces 
heating. The heating rate can be significantly suppressed by imposing 
a dipolar structure into the random driving sequence, such that the 
elementary building blocks now read U U^ ^

+ − and U U^ ^
− +. Similarly, the nth 

multipole can be recursively constructed by anti-aligning two (n − 1)
th-order operators, and in the n → ∞ limit it converges to the self- 
similar Thue–Morse driving20,24,36.

We first benchmark our experiments on 8 qubits, then we gradually 
enlarge the system size up to 78 qubits. To quantify the heating pro-
cess, we experimentally monitor the decay of the particle imbalance.  
In addition, we measure the evolution of the entanglement entropy 
and observe distinctive stages of its growth during the heating pro-
cess, thus going beyond established experimental results on driven 
systems where typically only the evolution of local observables is acces-
sible35,37–39. We perform more than 1,000 driving cycles, and such a 
long timescale allows us to capture the long-lived prethermal plateau 
in the high-frequency regime. Moreover, we experimentally verify 
the crucial role of the temporal multipolar correlation in stabilizing 
the system: the heating rates follow a power-law dependence on the 
driving frequency, with a universal scaling exponent of approximately 
2n + 1, in accordance with the original theoretical analyses of the heat-
ing processes active for RMD22,36.

Then by selecting different subsystem configurations, we demon-
strate a non-uniform spatial entanglement distribution and observe the 
crossover from the area-law to the volume-law entanglement scaling 
within the prethermal regime. The onset of heating further accelerates 
the entanglement growth, and advanced tensor-network numerical 
techniques, such as grouped matrix product states (GMPS) and pro-
jected entangled pair states (PEPS), struggle to keep pace with the 
rapid entanglement growth. Therefore, the experimentally observed 
prethermalization with controllable heating rates and the entire heat-
ing dynamics towards the maximally entangled infinite-temperature 
state40,41 are challenging to simulate classically with current compu-
tational resources.

Experimental set-up
Our experiments are performed on a flip-chip superconducting pro-
cessor, arranged in a 6 × 13 square lattice array (Fig. 1a), with 78 qubits 
and 137 couplers between all neighbour qubits. The qubits are labelled 
as Qx,y, with x ranging from 1 to 13 and y ranging from 1 to 6 (Fig. 1d).  
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Fig. 1 | Quantum processor and experimental scheme. a, Optical micrograph 
of the 78-qubit superconducting processor, Chuang-tzu 2.0. The processor is 
designed as a 6 × 13 square lattice, comprising 78 qubits interconnected by  
137 couplers that link all adjacent qubits. b, Schematic diagram of the RMD 
protocol, characterized by the temporal multipolar order n. The 0-RMD is 
constructed by randomly selecting elements from the two elementary operators 
U U{ ^ , ^ }+ − , and the n-RMD sequence consists of a random selection of two 

n-multipoles, which are obtained by anti-aligning two (n − 1)th-order operators. 
c, Elementary operators are generated as U iH T^ = exp{− ^ }± ± , with a driving period 

T, where Ĥ± differs in the staggered potential in the y direction. d, Experimental 
procedure. First, we initialize the system in a density-wave state, where even 
sites along the y axis are occupied (represented by red spheres), and odd sites 
are unoccupied (represented by grey spheres). The symbol X denotes X-gate 
pulses that excite qubits to their first excited states. Next, we implement the 
RMD protocol that destabilizes the density-wave order, and the system heats 
up. Finally, we use multiqubit QST to determine the entanglement entropy and 
perform particle number measurement to characterize the non-equilibrium 
time evolution.
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As the anharmonicity η is designed to be much larger than the hopping 
strength J, with an average value of −2π × 200 MHz, the system can be 
described as the non-integrable two-dimensional hard-core Bose– 
Hubbard model (or equivalently, the two-dimensional XY model)42. 
The effective Hamiltonian reads (ħ = 1): 

O

∑ ∑H ω n J a a

J a a J η

^ = ^ + [ ^ ^

+ ^ ^ + H.c. + ( / )],
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where ωx,y is the on-site potential, n̂x y,  denotes the particle number 
operator at the site (x, y), âx y,

†  and âx y,  are the creation and annihilation 
operators, respectively, and Jh and Jv are the horizontal and vertical 
hopping strength between two nearest-neighbour qubits, respec-
tively. H.c. denotes the Hermitian conjugate of the preceding coupling 
terms. In our set-up J2 ≪ η, the term J η( / )2O  is negligible. Device infor-
mation can be found in Supplementary Information section 3. Owing 
to the significant progress in coherence time, scalability and control-
lability of superconducting quantum circuits43–45, this platform has 
emerged as a powerful system for exploring complex quantum phe-
nomena that require precise manipulation.

Our target elementary operators in the n-RMD protocol are gener-
ated as U iH T^ = exp(− ^ )± ± , where T denotes the characteristic timescale 
(noted as the driving period below). In our experiments

H H δh H^ = ^ + (1 ± ) ^ , (2)κ± p

with a dimensionless parameter δh characterizing the driving ampli-
tude. Here the on-site term (h0 denotes the site potential) exhibits a 
uniform potential along the x axis and a staggered arrangement along 
the y axis 

∑H h a a^ = [1−(−1) ] ^ ^ , (3)
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x y x yp 0

,
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†
,

with the hopping term isotropic in both spatial directions, which reads 
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The parameters are chosen as J/2π = 2 MHz, δh = 1.2 and h0/2π =  
10 MHz; and T ranges from 3 ns to 8 ns. The average relaxation time 
(T1) of our device is 26.4 μs (Supplementary Information section 3B), 

allowing us to experimentally implement more than 1,000 driving 
cycles, before any notable decoherence occurs.

For 1-RMD, the protocol involves a random sequence of two dipolar 
operators U U^ ^

+ − and U U^ ^
− +; and for 2-RMD, the elementary building  

blocks become U U U U^ ^ ^ ^
+ − − + and U U U U^ ^ ^ ^

− + + −. Experimentally, implement
ing the driving protocol requires precise temporal modulation of the 
pulse signal, especially in the high-frequency regime (T ≈ 3 ns): qubits 
with an odd y index are biased to the working point, whereas the pulse 
signal following an RMD sequence is implemented on qubits with an 
even y index. Through careful calibration of the Z-pulse distortion and 
crosstalk, combined with precise timing alignment via Floquet engi-
neering, we achieve highly accurate RMD control (Supplementary 
Information section 4 and Methods).

As shown in Fig. 1d, we initialize the system as a density-wave ordered 
product state ψ ⟩0∣ , where all lattice sites with an even y index are occu-
pied, resulting in the maximal Hilbert space dimension. In the high-
frequency limit, T → 0, the early time evolution of the system can be 
described by an effective Hamiltonian, H H H^ = ( ^ + ^ )/2eff + − . After a short 
transient period, the system evolves to the prethermal state captured 
by the Gibbs ensemble βHexp(− ^ )eff  (ref. 46), with the inverse tempera-
ture β determined by the initial-state energy. The expectation value of 
a given local operator can also be determined accordingly. In our cur-
rent setting, the staggered potential along the y axis (equation (3)), 
stabilizes the initial density-wave order during the prethermal regime. 
However, for any finite T, switching between H+ and H− induces heating 
and destabilizes the prethermal state. As the system heats up to the 
infinite-temperature state with β(t) gradually dropping to zero, the 
expectation value of the local observable (and the entanglement 
entropy as defined later) generally follows its expected thermal value, 
with respect to the effective Hamiltonian47. Therefore, the particle 
number imbalance serves as a good diagnostics of this heating process 

I ∑N
ψ Z t Z ψ=

1
⟨ | ^ ( ) ^ (0)| ⟩, (5)

j x y
j j

0 ∈{ , }
0 0

with Z n^ = 2 ^ −1j j , and the initial particle number N0. In fact, our experi-
ment suffers from weak particle loss owing to the excitation to high 
energy levels, which can speed up the driving-induced heating. This 
effect can be suppressed by using an error mitigation scheme (Sup-
plementary Information section 5C). In addition to these local observ-
ables, we also study the time evolution of the entanglement entropy, 
S ρ ρ= −Tr[ ln ] , where ρ denotes the reduced density matrix of a  
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Fig. 2 | Prethermalization by RMD in an eight-qubit system. a,b, Experimental 
data showing the dynamics of the subsystem entanglement entropy (a) and 
imbalance (b), for driving periods T = 4 ns and T = 8 ns, where the prethermal 
plateau is clearly probed (shown as shaded regions). Both the lifetime of  
the entanglement plateau, τS, and the imbalance decay timescale, τI, can be 
prolonged by increasing the driving frequency. We implement the 1-RMD 

protocol, and the system comprises 8 qubits {Qx,y} (the inset in b), indexed by 
x = {5, 6, 7, 8} and y = {1, 2}. We use QST to determine the von-Neumann entropy 
of the qubit {Q5,2}. Error bars indicate 1 s.d. of the experimental results, averaged 
over 10 independent RMD sequences. The light dashed curves depict numerical 
results for benchmarking.
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subsystem, to capture the growth of non-local correlations between a 
subsystem and its complement. It provides valuable information for 
estimating the numerical complexity in simulating the many-body 
dynamics48–50. In the experiment, we perform quantum-state tomog-
raphy (QST)51 on a subsystem to reconstruct ρ at different stages of the 
heating process. This can be achieved by performing statistically com-
plete measurement sets, typically implemented through projective 
measurements along the Pauli eigenbases.

Characteristics of prethermalization by RMD
We first benchmark our experiments on eight qubits, which can be 
efficiently simulated numerically. Then, we gradually increase the 
system size (as shown in Fig. 3a) and finally use all 78 qubits, allow-
ing for a detailed analysis of heating dynamics and the entanglement 
entropy growth.

Figure 2a shows the measured entanglement entropy dynamics of 
a single qubit under 1-RMD, in a small-scale system of 8 qubits and 10 
couplers, for T = 4 ns and T = 8 ns respectively. The entropy evolution 

shows several distinct features. (1) Starting from S = 0, as expected  
for a product initial state, the entanglement entropy rapidly increa
ses within a short time. (2) A distinct prethermal plateau appears  
within the time interval 20 ns ≱ t ≱ 100 ns, hallmarking the notable 
suppression of energy absorption. This plateau can be described  
by a quasi-conserved effective Hamiltonian, which can be perturba-
tively constructed using a generalized Floquet–Magnus expansion36. 
(3) At later times, S deviates from the plateau and continues increasing. 
Around t ≳ 2,000 ns, it saturates at the maximum entropy SM ≈ 0.7,  
in accordance with the Page value, SP ≈ Lln2 (ref. 30), where L denotes 
the subsystem size, indicating that the system completely therma
lizes. We also perform exact numerical simulations (light dashed  
curves in Fig. 2a), which match well with our experimental observations. 
The lifetime of the prethermal plateau, τS, can be quantitatively deter-
mined by numerically fitting the entanglement entropy growth to  
the ansatz S S≈ (1−e )t τ

M
− / S  (ref. 47) in the intermediate region 100 ns ≱  

t ≱ 2,000 ns. By reducing the driving period from T = 8 ns to T = 4 ns,  
τS significantly increases from 0.25 μs to 1.03 μs, indicating a strong  
suppression of the heating rate.
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Fig. 3 | Scaling behaviour of the prethermal lifetime with driving frequency. 
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value of α(n) = 2n + 1 (black horizontal dashed lines). b, Decay of the imbalance 
shown in a log scale. The markers represent the experimental data, and the 
dashed and solid curves are obtained using the GMPS with bond dimension χ = 96 
and PEPS, for T = 7 ns and T = 4 ns, respectively, with 2-RMD drives. Numerical 
methods can capture only the early time evolution. c,d, The power-law scaling 

of the prethermal lifetime obtained from the dynamics of the imbalance τI (c) 
and the subsystem entanglement entropy τS (d) in the 78-qubit system. A larger 
multipolar order n significantly suppresses the heating rates. The subsystem 
for calculating the entanglement entropy comprises qubits {Q5,3, Q6,3}. The 
dashed lines are linear fits used to extract the scaling exponent, and the shaded 
regions indicate the corresponding confidence intervals of the fits. Error bars 
indicate 1 standard deviation of the experimental results, averaged over 10 
independent RMD sequences.
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A similar feature also appears during the decay of the imbalance. As 
shown in Fig. 2b, we observe that, starting from the initial imbal-
ance value = 1I , the imbalance decays towards 0 at later times, and a 
high-frequency drive significantly slows down this decay. The charac-
teristic decay timescale τI can be extracted by fitting the imbalance 
evolution to an exponentially decaying function I ∝ e t τ− / I. For T = 8 ns 
and T = 4 ns, the timscales are 1.2 μs and 7.4 μs, respectively.

Tunable heating rate by RMD
To further study the suppression of the heating rate, we perform a 
similar RMD protocol and examine the dependence of the prethermal 
lifetime on the driving frequency for a different multipolar order n. 
Experimentally, we implement the driving protocol on larger systems 
with distinct geometries, as shown in Fig. 3a. In particular, in Fig. 3b, 
we present the time evolution of the imbalance for the 78-qubit system 
driven by the 2-RMD protocol using T = 4 ns and T = 7 ns (orange and red 
dots, respectively). In both cases, the imbalance decays exponentially, 
in agreement with both numerical47 and experimental observations dur-
ing the heating process35. In Fig. 3c,d, we use a log–log scale and show 
the prethermal lifetimes τI and τS for different 1/T. Data points approxi-
mately follow a straight line, suggesting a power-law decay, τI,S ≈ (1/T)α. 
This power-law behaviour is in sharp contrast to conventional Flo-
quet systems with local interactions, where the prethermal lifetime 
scales exponentially with the increase of the driving frequency τI,S ≈ e1/T  
(refs. 37,39). It is noted that the scaling exponent α is now tunable 
and shows a strong dependence on the multipolar order in the 
high-frequency regime. This is a significant feature of RMD systems, 
which cannot be achieved with either Floquet or other quasi-periodic 
drives. The reason is that the multipolar structure suppresses the 
low-frequency components of the drive, thereby constraining heat-
ing. A generalized Floquet–Magnus theory and a Fermi’s golden rule 
argument predicts the relation α = 2n + 1 (refs. 22,36).

Experimentally, for the 78-qubit system and n = {0, 1, 2}, we numeri-
cally fit the exponent based on the prethermal lifetime of the entangle-
ment entropy plateau and obtain αS = {0.904, 2.976, 4.182}. On the basis of 
the imbalance decay, we obtain the exponents αI = {0.871, 2.727, 3.344}.  

In Fig. 3a, we summarize the scaling exponents αI, which reveal a positive 
correlation between αI and n across all investigated system sizes and 
configurations. More experimental data on the corresponding time 
evolutions can be found in Supplementary Information section 7A,B. 
In particular, the scaling exponents for n = 0 and n = 1 closely follow 
the theoretical prediction (black horizontal dashed lines in Fig. 3a). 
For n = 2, it is particularly challenging to obtain a converging scaling 
exponent, which requires an extremely fast drive with noiseless pulse 
control, and long evolution time (see detailed discussions in Supple-
mentary Information section 5B). Here we implement approximately 
1,000 driving cycles to clearly distinguish the scaling behaviours for 
n = 1 and n = 2. This also highlights the exceptional long-time stability 
and controllability of Chuang-tzu 2.0, which allows us to precisely 
engineer the temporal correlations and manipulate the quantum ther-
malization process.

To validate our experimental observations, we use advanced numeri-
cal techniques based on tensor-network representations52 to approxi-
mately simulate the many-body dynamics. We initially developed the 
PEPS with a single update for simulations. PEPS is a two-dimensional 
tensor network and is feasible for our circuit system. However, owing 
to the lack of canonical form, PEPS is not accurate in long-time simu-
lations. The simulation results are shown in Fig. 3b, where we can see 
that shortly after a few driving cycles (t ≈ 0.1 μs), the PEPS simulations 
show significant deviations from the experimental data. To improve 
the numerical accuracy, we further developed the GMPS method. Com-
pared with the conventional matrix product states (MPS) method, the 
GMPS method merges certain tensors in the conventional MPS into a 
giant tensor, thereby avoiding truncations inside the giant tensor and 
the swapping operations in MPS. This strategy is particularly efficient 
in simulating quasi-one-dimensional systems such as our system. As 
shown in Fig. 3b, for T = 4 ns, as the staggered potential strongly con-
strains the entanglement growth, GMPS correctly captures the experi-
mental data at early times (also see results for T = 3 ns in Supplementary 
Information section 5C with high accuracy) whereas a clear deviation is 
visible for t > 1 μs. For slow driving (T = 7 ns), notable deviation already 
appears at early times, t ≱ 0.5 μs. In Supplementary Information sec-
tion 1C, we systematically study the performance of GMPS and observe 
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the entanglement entropy for different subsystem configurations, involving  
4 qubits in the 78-qubit system. All subsystems dynamics enter a long-lived 
prethermal regime, among which A exhibits pronounced oscillatory dynamics. 
Inset: the entanglement entropy averaged over the prethermal regime 
(30 ns ≤ t ≤ 100 ns, denoted between two black vertical dashed lines in a), as a 
function of volume V for subsystems A and B. b, The volume (sV) and the area 

entanglement entropy (sA) per site, numerically fitted by analysing subsystems 
of varying volumes and areas at different times. The error bars correspond to 
1 s.d. of the fitting parameter. c, Ratio sV/sA at different times, as a quantitative 
measure to distinguish between the area-law and the volume-law scaling.  
As time evolves, a clear crossover from the area-law to volume-law scaling is 
observed around 5–10 ns. Here we use 1-RMD protocol and T = 4 ns to perform 
the experiment.
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that its estimated fidelity significantly decays as heating occurs (fidelity 
drops below 0.05 when t ≈ 1.5 μs). The rapid growth of entanglement 
during this process limits both its accuracy and efficiency. Therefore, 
our quantum processor allows us to simulate the entire heating dynam-
ics towards the highly entangled infinite-temperature states that is 
extremely costly to simulate classically53–58.

Entanglement dynamics and scaling
We further investigate the subsystem size dependence of the entangle-
ment entropy. Specifically, we perform QST on various subsystems, 
each comprising up to 4 sites from the 78-qubit system. As shown in 
Fig. 4a, these configurations show distinct spatial arrangements: the 
subsystem A is aligned with the x axis, B is oriented along the y axis, 
and C forms a 2 × 2 square lattice. Figure 4a depicts the entanglement 
entropy dynamics for different subsystems, all exhibiting the long-lived 
prethermal regime. Moreover, the entanglement dynamics strongly 
depend on the specific choice of subsystems: A shows pronounced 
oscillatory dynamics during the prethermal regime, whereas B and C 
quickly saturate at a plateau, suggesting a non-uniform entanglement 
distribution in two dimensions. These oscillations originate from the 
coherent particle exchange between qubits with even and odd y index, 
stabilized by the staggered potential in the effective Hamiltonian Ĥeff, 
and can also be validated via GMPS simulations (Supplementary Fig. 4).

To quantify the entanglement entropy scaling, we calculate the aver-
aged entropy, Spre, in the prethermal regime to reduce the temporal 
fluctuations. In the inset of Fig. 4a, we show preS  as a function of the 
linear subsystem size V for A (red) and B (blue), and linear dependence 
can be observed. For other possible subsystem configurations, in  
practice, one can approximately distinguish different contributions 
using the ansatz50, ρ s A s V( ) = + ,A VX X XS  where ρX denotes the reduced 
density matrix of a subsystem X, AX and VX correspond to the subsys-
tem’s area and volume, respectively. The ratio sV/sA quantifies the degree 
to which the state adheres to area-law or volume-law entanglement 
scaling. By analysing 12 non-repetitive subsystems (Supplementary 
Information section 7D) by varying volumes and areas, we numerically 
fit sV and sA and show their time evolution in Fig. 4b and the ratio sV/sA 
in Fig. 4c. At early times (t ≤ 30 ns), the system stays close to the 
density-wave ordered product state, and sV/sA remains small. Indeed, 
a crossover of the values sV and sA occurs around 5–10 ns (Supplemen-
tary Information section 7C. A notable increase of sV/sA occurs around 
t ≈ 50 ns, and this ratio becomes substantially larger than 1, confirming 
that the system now exhibits volume-law entanglement scaling. At later 
times, entanglement further increases, such that the system’s dynam-
ics become further computationally intractable.

Conclusion and outlook
We present a systematic experimental study of the non-equilibrium 
dynamics of two-dimensional interacting systems driven by the n-RMD 
protocol on a 78-qubit superconducting processor. Its precise and 
stable pulse sequence allows for the demonstration of the long-lived 
prethermal plateau and suppressed heating rates, which show the char-
acteristic algebraic scaling T2n+1 in the high-frequency regime. These 
features are sufficiently universal, as they should generally appear in 
locally interacting systems with generic initial states, and are not lim-
ited to our current settings. The possibility of driving closed quantum 
systems with temporal randomness while avoiding heating paves the 
way for engineering non-equilibrium phases of matter beyond the 
conventional Floquet paradigm.

By performing QST, we observe the growth of the subsystem entan-
glement entropy during the entire heating process. Although the sys-
tem eventually evolves towards the featureless infinite-temperature 
state, during the prethermal regime, we observe a non-uniform spatial 
entanglement distribution. In particular, subsystem A shows coherent 

oscillatory entanglement dynamics. These observations shed light on 
the understanding of the microscopic generation of entanglement, 
especially in higher dimensions, where the subsystem configurations 
can exhibit a rich geometric structure.

Furthermore, by analysing the entanglement entropy for various 
subsystems, we demonstrate the crossover from area-law to volume-law 
entanglement scaling as time evolves. The onset of heating further 
accelerates the entanglement growth. Therefore, our work highlights 
superconducting quantum processors as a powerful platform for 
exploring non-equilibrium phases of matter and heating dynamics in 
driven systems where classical simulation faces formidable challenges.

It will be interesting to further explore the initial-state dependence 
and the spatial non-homogeneity in the heating process, as well as the 
stability of many-body localization and anomalous topological phases59 
in randomly driven systems. In addition, identifying different pre-
thermalization mechanisms for much broader classes of non-periodic 
drives remains an open and interesting direction. Finally, although 
our experiment is performed on a superconducting processor, the 
underlying heating control mechanism is readily applicable to dif-
ferent quantum simulator platforms and can stabilize sought-after 
non-equilibrium phenomena in driven systems.
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Methods

Experimental set-up
Our experiments are performed on a superconducting quantum pro-
cessor, named Chuang-tzu 2.0, which comprises 78 qubits arranged in 
a square lattice configuration with 6 rows and 13 columns. Each pair of 
nearest-neighbour qubits is interconnected by an adjustable coupler, 
resulting in a total of 137 couplers within the processor. With all 78 
superconducting qubits initialized at their idle points, we prepared 
the initial state using X gates, and the X-gate pulses are optimized to 
minimize the leakage to higher energy levels, achieving an average 
gate fidelity of 99.4%. Then, the RMD pulses are applied on all qubits 
to engineer the Hamiltonian, for experiments of different parameters. 
The states of all qubits can be read out simultaneously through the 
transmission lines coupled to readout resonators. All qubit probabili-
ties are corrected to eliminate the measurement errors.

It is noteworthy that the qubit connectivity in our processor, while 
maintaining a square lattice structure, differs slightly from proces-
sors such as Sycamore53, which feature a square lattice with zig-zag 
edges. We use a tunable coupler with a capacitively connecting pad 
architecture45, which facilitates a 1,200-μm spacing between adja-
cent qubits, thereby ensuring sufficient wiring space. The qubits and 
couplers are fabricated on the qubit layer chip, whereas the control 
lines, readout lines and readout cavities are integrated into the wir-
ing layer chip. These two chips are interconnected using flip-chip 
bonding technology. The readout cavities for the six qubits in each 
column are multiplexed onto a single readout line and are capaci-
tively coupled to the qubits through interfacial capacitance. The 
control lines are similarly coupled to the qubits and couplers, ena-
bling excitation and biasing via interfacial capacitance and mutual  
inductance.

RMD pulse
To implement the Hamiltonian described in the main text, the qubit 
frequency ωq needs to be rapidly modulated between two values 
ωq = ωc + δh × h0 for U+, whereas ωq = ωc − δh × h0 for U−, where ωc is the 
common qubit frequency. For the frequency-tunable transmon qubit, 
the relationship between ωq and the amplitude of Z pulse z is 

ω E E kz b E= 8 cos( + ) − , (6)q JJ C C∣ ∣

where EJJ denotes the Josephson energy, EC is the charging energy, and 
kz + b = Φext/Φ0 with the weak external flux Φext (Φext depends linearly on 
the amplitude of the Z pulse z, with k and b being the slope and inter-
cept, respectively). The RMD pulse consists of a series of square Z 
waves with duration of T. Owing to the constrained sampling rate of 
the DAC (digital-to-analogue converter), both the falling and rising 
edge durations are inherently limited to a minimum of about 0.5 ns. 
In our experiments, these square waves are substituted to trapezoidal 
waves with edges of 0.5 ns.

To further characterize the RMD pulse, we measure the dynamical 
phase induced during its operation. Initially, the qubit is prepared at 
its idle point and excited using an X/2 gate. Then, the qubit is biased to 
the working point using the RMD pulse and the flat pulse following a 
delay, respectively. After turning off all Z pulses to tune the qubit back 
to its idle point, we apply another rotation R ( )ϕ

π
2 , with ϕ ranging from 

0 to 2π. The population of ∣1⟩ state reaches its maximum only when  
ϕ compensates for the accumulated dynamical phase. In Extended 
Data Fig. 1a,b, we show the accumulated phase in the RMD case 

∫φ t t ω t ω( ) = d [ ( )− ], (7)
t

r 0
r idle

where ωr(t) is the qubit frequency under RMD, and the phase in the 
flat case 

∫φ t t ω ω( ) = d ( − ). (8)
t

c 0
c idle

The RMD sequence is precisely recovered by differentiating (φr − φc) 
with respect to time 

ω t ω
t

φ t φ t( ) − =
d

d
( ) − ( ) . (9)r c r c







The result, as depicted in Extended Data Fig. 1c, is well in accordance 
with the engineered sequence.

GMPS
The commonly used MPS representation for a two-dimensional lattice 
involves winding the MPS across the lattice, effectively forcing the 
system into a one-dimensional configuration. This transformation 
makes the nearest neighbouring interactions non-local, depending on 
the chosen ordering. To avoid the long-range interactions, we use the 
GMPS method, where we group Ly lattice sites in a single column, treat-
ing them as a single site with a physical dimension of 2 Ly. This allows 
us to represent the system as an MPS of length Lx. The advantage of this 
method is that it preserves locality. However, the trade-off is that it is 
not scalable in the y direction.

We use the second-order Trotter–Suzuki decomposition H H H^ = ^ + ^
± ±

1 2
 

to approximate the time-evolution operators as follows 

∑H h a a J a a^ = ^ ^ + ( ^ ^ + H.c.), (10)
x y

x y x y x y x y±
1

,
± ,

†
, , +1

†
,

∑H J a a^ = ( ^ ^ + H.c.). (11)
x y

x y x y
2

,
+1,

†
,

The single-site operators U H t^ = exp(−i ^ )±
1

±
1

 are 2 × 2L Ly y matrices and 
can be directly applied to each tensor. For two-site hopping terms, we 
take Ly = 4 as an example and summarize update rules below (Extended 
Data Fig. 2).
1.	 Perform QR decompositions on each tensor to isolate the active 

physical bonds (i4 and j4 here) into R tensors. This step is essential 
for ensuring that the calculations are in the most computationally 
efficient manner.

2.	Apply the two-site time-evolution operator and contract into a single 
tensor.

3.	Execute a singular value decomposition and eliminate the singular 
values that are smaller than a specified threshold. Subsequently, 
truncate the results by retaining the largest χ singular values.

4.	Absorb the singular values and vectors into the updated tensors.

Owing to the canonical form in MPS, it is possible to monitor fidel-
ity throughout the update process. During each truncation step, the 
singular values s1 ≥ s2 ≥ … ≥sD are arranged in descending order, and 
only the top χ(<D) singular values are kept. Consequently, the fidelity 
is given by the ratio: 

s

s

∑

∑
, (12)k

χ
k

k
D

k

=1
2

=1
2

This expression provides a measure of how much of the original 
state’s information is preserved after truncation.

Data availability
The source data underlying all figures are available at https://doi.
org/10.6084/m9.figshare.30675821. Other data are available from 
the corresponding authors upon request.

https://doi.org/10.6084/m9.figshare.30675821
https://doi.org/10.6084/m9.figshare.30675821


Code availability
The codes used for the numerical simulations are available from the 
corresponding authors upon request. 

Acknowledgements P.Z. and K.C. thank B. Zhou for discussions on the MPS simulations.  
We thank T. Mori for his previous theoretical contributions. We thank the support from the 
Synergetic Extreme Condition User Facility (SECUF) in Huairou District, Beijing. Devices were 
made at the Nanofabrication Facilities at Institute of Physics, CAS in Beijing. This work was 
supported by the National Natural Science Foundation of China (grant numbers T2121001, 
T2322030, 92265207, 12122504, 12247168, 12325501, 12047503, 12247104, 12474214, 12475017 
and 92365301), the Innovation Program for Quantum Science and Technology (grant numbers 
2021ZD0301800 and 2024ZD0301800), the Beijing Nova Program (numbers 20220484121  
and 20240484652), the Natural Science Foundation of Guangdong Province (grant number 
2024A1515010398), and the China Postdoctoral Science Foundation (grant number 
GZC20252227).

Author contributions H.F. and K.X. conceived of the project. H.Z. proposed the idea and 
designed the experiment. Z.-H.L., Y.L. and C.-L.D. carried out the experiments and analysed the 

experimental data supervised by K.X. Y.L. and Z.-H.L. performed the exact diagonalization and 
K.C. performed the tensor-network numerical simulations and discussed with L.Z., Y.-R.Z., P.Z., 
K.X., H.Z. and H.F. G.-H.L. designed and fabricated the processor supervised by Z.X. and D.Z. 
Y.-H.S., T.-M.L., C.-P.F., D.F., Y.H., K.H., H.L., H.-T.L., L.L., Z.-Y.P., J.-C.S., S.-L.W., Z.W., M.X., Y.-S.X., 
Y.-H.Y., W.-P.Y., J.-C.Z., J.-J.Z., K.Z., S.-Y.Z., Z.-A.W. and Y.T. contributed to the experimental set-up. 
B.-J.C., X.-Y.G., Z.-Y.M., M.-C.W., Y.X., Y.Y. and X.S. helped to fabricate the processor. H.Z., F.M., 
J.K. and R.M. provided the theoretical explanations. H.Z., Y.L., Z.-H.L., C.-L.D., K.C., G.-H.L., 
Y.-R.Z., P.Z., K.X. and H.F. co-wrote the paper, and all authors contributed to the discussion of 
the results and development of the paper.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-025-09977-x.
Correspondence and requests for materials should be addressed to Zhongcheng Xiang,  
Kai Xu, Hongzheng Zhao or Heng Fan.
Peer review information Nature thanks Amir Karamlou and the other, anonymous, reviewer(s) 
for their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-025-09977-x
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Characterization of the random multipolar driving 
(RMD) pulse. a, The measured phase φr, when employing RMD pulse, as a 
function of RMD pulse duration. b, The measured phase, φc, obtained by 
applying rectangle Z pulse, versus the pulse duration. c, The qubit frequency, 

derived by differentiating (φr − φc) with respect to time, as a function of the 
delay. The dashed curve represents the engineered RMD sequence, with the 
characteristic timescale T = 3 ns, n = 1 and the amplitude of δh ⋅ h/2π = 70 MHz. 
Specially, the RMD sequence reads {U+U−U−U+U−U+ …}.



Extended Data Fig. 2 | Single step update protocol of the time evolution 
with two-site operators. i1 ~ i4 and j1 ~ j4 are labels for the local physical  
bonds along the y-direction. The canonical tensors are labeled in yellow.  
a–b, QR decomposition on each tensor to extract the physical bonds i4 and j4 

into Ri( j) tensors. b–c, Contraction of Ri( j) tensors together with the time- 
evolution operator. c–d, We apply the singular value decomposition and  
keep the largest χ singular values. d–e, Then we absorb the singular values  
and vectors into Qi( j) to update tensors.
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