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Determining critical points of phase transitions from partial data is essential to avoid abrupt system
collapses and to reduce experimental or computational costs. However, the complex physical systems and
phase transition phenomena have long hindered the development of unified approaches applicable to both
equilibrium and nonequilibrium phase transitions. In this Letter, we propose predictive indicators to determine
critical points in equilibrium and nonequilibrium magnetic systems based on the frequency-dependent
response function. For equilibrium phase transitions, such as magnetization switching under a magnetic field,
the static magnetization response function to a perturbing magnetic field diverges at the critical field, serving
as a noise-resilient predictive indicator that also reflects the transition order and critical exponents. In contrast,
for nonequilibrium phase transitions such as magnetization switching driven by transfer torque, static
response fails to signal criticality. Instead, the dynamic response at ferromagnetic resonance frequency
diverges at the critical point, which is also robust against thermal noise. We further demonstrate that these
static and dynamic indicators can be unified in the frame of first-order linear differential systems, offering a

generalizable strategy for predicting criticality in both equilibrium and nonequilibrium transitions.

DOI: 10.1103/81nz-k6tb

Phase transition is an emergent [1-3] phenomenon that
widely exists in physical systems [4—7], biological systems
[8-12], and socioeconomic networks [13]. Predicting the
critical point of phase transitions helps avoid sudden
system collapses, reduces the cost of experiments and
simulations, and aids in understanding emergent behaviors.
For example, in spintronics, predicting the critical current
[14-19] is essential for stabilizing magnetic random-access
memory (MRAM) devices. Several works have proposed
significant methods for predicting critical points, such as
mean-field theory [20], Landau’s theory of phase transi-
tions [21], renormalization group [22], machine learning
[23-25], dynamical equation analysis [14—19], and critical
slowing down and variance increase analysis [8,26,27].
These methods require prior knowledge of the system’s
Hamiltonian or dynamical equations or necessitate dense
sampling near the critical point. For unknown systems,
determining the critical point based on partial data is an
interesting and challenging task.

There are distinctions in the phase transition mechanisms,
critical behaviors, and research methods between equilibrium
and nonequilibrium phase transitions, while studies on their
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connections are relatively scarce. Complex research systems
and phase transition phenomena have hindered the develop-
ment of general methods for determining the critical points of
both equilibrium and nonequilibrium phase transitions.
Magnetic systems, however, exhibit both types of phase
transitions and have clear physical pictures. On the one hand,
the magnetization can be switched by a magnetic field, and
the phase transition occurs due to changes in the minimum of
the free energy, which belongs to equilibrium phase tran-
sitions. On the other hand, in cases where magnetization
is switched using transfer torque (STT) [28], orbit torque
[29,30], or laser [31-35], the phase transition arises from
dynamic instability caused by the injection of energy
flow, which belongs to nonequilibrium phase transitions.
Therefore, magnetic systems serve as an ideal platform for
studying both types of phase transitions. However, a unified
method for predicting the critical points of equilibrium and
nonequilibrium phase transitions in magnetic systems is
currently lacking and remains an open question.

In this Letter, we propose two appropriate prediction
indicators for critical points in equilibrium and nonequili-
brium magnetic systems. We calculate the cases of magnetic
field- and STT-driven ferromagnet switching with perpendi-
cular magnetic anisotropy, corresponding to equilibrium and
nonequilibrium phase transitions, and study the response
function of magnetization to a transverse disturbance field.
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Additionally, we explore how to utilize the static response to
determine the transition order and critical exponents of
equilibrium phase transitions. Finally, we generalize these
two indicators to first-order linear dynamical systems.
Predicting the critical magnetic field for magnetization
switching is crucial for designing new magnetic materials
and improving magnetic device stability. For a ferromagnet
with perpendicular magnetic anisotropy subjected to a
constant magnetic field B, in the z direction and an
oscillatory perturbative field B, = B,ycos(wt) in the x
direction, the double-well potential model describing the
system’s energy is illustrated in Fig. 1(a). If the initial state is
down, as the B, gradually increases, the energy of the down
state gradually increases. When it exceeds the barrier, the
magnetization undergoes a switching, which is an equilib-
rium phase transition process, and the state of the system is
determined by minimizing the free energy. In order to study
the effect of B, on the magnetization, we calculated the
response function of m, to B,, which is defined as
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FIG. 1. (a) Energy landscape of a double-well potential
representing the equilibrium magnetic system under B, =
B, cos(wt) and B, > 0. (b) The dependence of response function
|70(w)| on the dc magnetic field B, and ac perturbation magnetic
field’s frequency w. (c) The dependence of |71, (w)| on B, at
o = 0 and o, for the lower half branch of the hysteresis loop with
B,y = 0.01B.. (d) Relative error (RE) between |,(0)| and
|/,0(0)]. () The RE as a function of B, and B,y. (f) The
|/,(0)| dependence on the temperature 7 at B, = 0.5B,.

To(w) =

Its Fourier transform j((w) reflects the amplitude of the m,
oscillation at frequency w. By first linearizing the Landau-
Lifshitz-Gilbert (LLG) equation up to the first-order terms of
m, and m,, then performing the Fourier transformation on
the equation, and finally calculating the frequency response
of m, with respect to B,, one can obtain

a*(B,m, + Km?)+ B.m_ + K — IMCO

B+ Kom2) = 0D (Bt om)?
(2)

Here, K is the anisotropy field, u, is the saturation
magnetization, and y is the gyromagnetic ratio. For a detailed
derivation, please refer to Supplemental Material Sec. A
[36]. The dependence of |7y(w)| on w and B, is shown in
Fig. 1(b). Here, B. = K represents the critical magnetic
field, and w,. = yK/u, represents the ferromagnetic reso-
nance frequency in the absence of an external magnetic field,
B,y = 0.01B.. As shown in Fig. 1(b), |70(0)| increases
rapidly as B, approaches B, which suggests that we can use
| (0)| as a predictive indicator for the magnetization
switching. Substituting @ = 0 and m, = —1 into Eq. (2),
we can obtain

1

51K (3)

70(0)

The relationship between [j7((0)| and |f(w@,)| with respect
to B, for the lower half branch of the hysteresis loop is
shown in Fig. 1(c). We can observe that |7,(0)| increases
rapidly as B, approaches B., while |7y(w.)| gradually
decays, which is consistent with the results of past experi-
ments [37,38] and theoretical studies [39-41]. This is
because the increase in B, destroys the resonance condition.
The relative error, RE = |7(0) — 70(0)|/[7(0) + ¥0(0)],
where 7(0) is a simulated response function using the
LLG equation with respect to B,, varies as shown in
Fig. 1(d). Near B,, the RE increases rapidly, because the
deviation of magnetization becomes larger near B, violating
the assumption |m,| < 1. The dependence of RE on B,
and B, is shown in Fig. 1(e). We can observe that as B,
approaches B, and B,, gradually increases, the RE
increases, which is also due to the increased magnetization
deviation. Finally, thermal noise is introduced, and the
temperature 7 dependence of |, (0)| is calculated at
B, =0.5B,, as shown in Fig. 1(f). Each temperature is
repeated 20 times. It shows that the temperature has almost
no effect on the mean value of |7,(0)|, but the variance
increases as the temperature rises. This demonstrates the
temperature robustness of |i7,(0)| as a predictive indicator
for magnetization switching.

In the previous section, it is demonstrated that the
response of an equilibrium magnetic system to a static
perturbation magnetic field is amplified near the critical

196705-2



PHYSICAL REVIEW LETTERS 135, 196705 (2025)

point. Interestingly, by utilizing this property, we can
determine the transition order and the critical exponent
of the equilibrium phase transition. For the first-order phase
transition system shown in Fig. I(a), linearizing the
equilibrium LLG equation solves analytically for m, under
a small uniform transverse perturbation B, from —B,, to
B,y and computes the variances of m, as follows:

Var(m,) = 2Bio/[45(BZ - BC)4], (4)
and the max value is

Var(’”z)max = 1' (5)
For a detailed derivation, please refer to Supplemental
Material Sec. B [36]. The dependence of Var(m.) on B, is
shown in Fig. 2(a). It is worth noting that the maximum
value of Var(m.) does not depend on B, but only on the
difference in magnetization before and after the critical
point. For the case of a second-order phase transition, we
take the ferromagnetic-to-paramagnetic transition in two-
dimensional Ising model as an example. As shown in
Fig. 2(b), a 50 x 50 Ising model is subject to a constant
magnetic field hy, and a perturbation temperature AT,
which follows a uniform distribution from —AT, to AT,
The magnetization m, and Var(m.) as a function of
temperature are shown in Fig. 2(c) with exchange inter-
action energy J = 1, Boltzmann’s constant kz = 1, hy = 0,
and AT, = 0.2. Near the critical temperature, 7. = 2.269,
the magnetization approximately follows m, « (7. — T)?,
where « is the critical exponent that is ideally equal to
0.125 [42]. The dependence of Var(m,) on T is

1
Var(m,) = 3 (T, — T)2“‘2AT(2), (6)
and the max value is
Var(mz)max 5 (ATO)za' (7)

By comparing Egs. (4) and (6) and Egs. (5) and (7), two
interesting conclusions can be extracted. First, while the
peak value of the variance remains independent of pertur-
bation strength in first-order transitions, it strongly depends
on it in second-order cases. Second, in the case of second-
order transitions, the critical exponent « can be extracted by
examining the scaling behavior of the variance near the
critical point. Specifically, the scaling behavior of Var(m_)
is plotted on a logarithmic scale and performs a linear fit
in the vicinity of the transition critical point, as shown in
Fig. 2(d). The estimate @ = 0.121 is in close agreement with

the theoretical prediction, 0.125. Deviations from linearity
|
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FIG. 2. (a) The perturbation-induced variance Var(m_) of the

lower half part of the hysteresis loop as a function of B,. (b) A
50 x 50 Ising model subject to a constant magnetic field 4, and a
perturbation temperature A7. (c) A combined plot of magneti-
zation m, and Var(m,) as a function of T with hy =0 and
ATy = 0.2. (d) The relationship between Var(m,) and temper-
ature T near the critical point T, & 2.269.

observed far from the critical point arise due to the
breakdown of the approximation m, = [1 — sinh~*(In(1+
V2)T,./T)]"/® ~ (1 -=T/T,)"/®, which holds only in the
regime (7. -T)/T. < 1.

Compared to equilibrium phase transitions, due to the
lack of a unified theoretical framework and the complexity
of research systems and phenomena, nonequilibrium
phase transitions have been relatively less studied.
However, ferromagnetic systems can serve as a simple
and clear physical model. Considering a ferromagnet with
perpendicular magnetic anisotropy subjected to a constant
STT J,, polarized in the z direction, a constant magnetic
field B, in the z direction, and an oscillatory perturbation
magnetic field B, = B,ycos(wt) along the x direction,
the double-well potential model is illustrated in Fig. 3(a).
Unlike magnetic field-driven magnetization switching,
STT-driven magnetization switching occurs by destabiliz-
ing the system from its equilibrium point rather than
altering the system’s energy landscape. When the STT is
sufficiently large to push the system over the energy barrier,
the magnetization switches, which belongs to the non-
equilibrium phase transition process. Conclusions drawn
from previous studies on equilibrium phase transitions are
valid. Therefore, by using the same method as in Eq. (2),
and taking into account the influence of STT in the LLG
equation, we can obtain the response function as

Jo(w) =

(Jyum; + a(B.m + Km2) =i 0)* 4 (B, — aly, + Km.)?

(8)
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FIG. 3. (a) Energy landscape of a double-well potential
representing the nonequilibrium magnetic system under
B, = B,gcos(wt) and spin transfer torque strength Jg,.
(b) The dependence of response function |7o(w)| on the J,
and ac perturbation magnetic field’s frequency w. (c) The
dependence of |/, (w)| on J;, at @ = 0 and w,. for the lower half
branch of the hysteresis loop with B,, = 10 B,. (d) Relative
error between |7, (w,)| and |71, (@, )|. (e) The RE as a function
of Jy;; and B,y. (f) The |7/, (w.)| dependence on the temperature
T at J,, = 0.5J..

Substituting @ =0 and m, = —1 into Eq. (8), we can
obtain

K- B,

5 (0) = ——~ Pz
ZO( ) J%”—l-(BZ—K)z

©)

The detailed derivation is in Supplemental Material Sec. C
[36]. From Eq. (9), it can be seen that as the absolute value
of J,, increases, the static response function decreases
monotonically. Clearly, it cannot serve as an indicator for
predicting phase transitions. Therefore, we analyze the
situation at the critical current, substituting J, =J. =
—a(B, + Km,) and m, = —1 in Eq. (8). To simplify the
physical picture, we consider the case where B, = 0. It
follows that

K—ia®Bw

(o + 1)(K2

Xol@)ly,—. =

Therefore, when @w = w,., the response function tends to
diverge at the critical point, and |y(w,)| is

V1 + a?K
(aK — J )N/ (J e + aK)* +4K2

Zo(@c)| =

(11)

The dependence of the response function on @ and J, is
shown in Fig. 3(b). It can be observed that |7o(w,)]
increases rapidly as J,, approaches J., indicating that
we can use |/, (w.)| as a predictive indicator for STT-
driven magnetization switching. The dependence of
|/, (0)] and | (w.)| on Jg, for the lower half of the
hysteresis loop is shown in Fig. 3(c). As J,; approaches J .,
|/, (w..)| increases rapidly, while |71, (0)| gradually decays,
which is exactly the opposite of the situation where the
magnetization is switched by magnetic field. It is consistent
with the results of past experiments [43,44]. Interestingly, it
shows that when the magnetic system is in a resonant state,
its response to external disturbances is amplified, while its
response to internal disturbances is suppressed. We calcu-
late the relative error, as shown in Fig. 3(d). Near J, the
RE increases rapidly because the magnetization deviation
from the equilibrium state increases. It is worth noting that
for the same B,, the magnetization in the resonant state
deviates from the equilibrium state much more than not
in the resonant state. Therefore, in the calculations of
Figs. 3(c)-3(f), B,y = 107°B,, which is 1/1000 that in
Fig. 1. The dependence of RE on J,; and B, is shown in
Fig. 3(e). It can be seen that as J,, and B, increase, RE
increases rapidly, which is also because of the increased
magnetization deviation. Finally, we calculate the effect of
thermal noise on |, (w.)| at Jy, = 0.5J., as shown in
Fig. 3(f). By repeating the calculation 20 times at each
temperature, it can be observed that as the temperature
increases, the mean value of |/, (@, )| remains essentially
unchanged, but the variance gradually increases, which is
similar to the situation when the magnetic field switches
the magnetization, reflecting the temperature robustness of
|m(w.)| as a critical prediction indicator. Dynamic
response under weak transverse perturbation provides a
sensitive indicator of approaching the critical point in
MRAM devices, offering an early warning of write/read
failure, instability, and inhomogeneity. This method also
establishes a predictive and stabilizing mechanism for
reliable spin torque oscillator operation.

Based on the above analysis, it is demonstrated that
for magnetization switching driven by magnetic fields and
STT, the response amplitude of m, under perturbation
fields at frequencies of 0 and w, can serve as predictive
indicators for critical points. It is interesting to generalize
this approach to more general systems. For a system
exhibiting both equilibrium and nonequilibrium phase
transitions, assume it follows a first-order linear differential
equation,
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dX (1)
dt

= AX(1) + B(1). (12)

In the equation, X is an n-dimensional vector composed of
order parameters, A is the dynamic coefficient matrix, and
B is the input vector that determines the steady state of the
system. The eigenvalues 4;(i = 1,2, ..., n) of A are ordered
according to their real parts, with the assumption that
Re(4;) > Re(4,) > -+ > Re(4,). When the system is at
the critical point of an equilibrium phase transition, it must
hold that Re(4;) = 0. Since the system is in equilibrium
and there is no external energy input, oscillations cannot
occur at the critical state. Therefore, Im(4;) = 0 holds true
and det(A) =0, which implies that for a static small
perturbation, the response of X, which is A~'B, tends to
diverge as the system approaches the critical point. For
example, in the case of magnetic field-driven magnetization
switching, 4;,=—y/[u,(1+a*)|[a(-B,+K) +i(B,—K)],
B(t) = y/[u;(1 + @®)](a, 1)TB,, at the critical magnetic
field B, = K, Re(4;) = Im(4,) = 0. However, for non-
equilibrium phase transitions, the situation is totally differ-
ent. At the critical point, there still exists Re(4;) = 0, but
injection of external energy flow enables the oscillatory
behavior, which is a main difference between equilibrium
and nonequilibrium phase transitions. Therefore, Im(4,)
may not equal O at the critical point, and Hopf bifurcation
may occur. For a constant perturbation, the response of X
may not tend to diverge at the critical point. For instance,
in the case of STT-driven magnetization switching dis-
cussed above, Aj,=—y/[u,(1+a®)|[~Jsrr+a(K—B.)+
i(B,—aJsry—K)|, and at the critical current J.=
a(K—B.). Re(t)=0. Im(i )= +iy(K - B,)/u,.
However, if the perturbation has a frequency of
. = |Im(,;)|, the response of X will gradually diverge
as the system approaches the critical point. Therefore, X (0)
and X (w,) can serve as predictive indicators for the critical
point in equilibrium and nonequilibrium phase transition,
respectively. Several significant works previously reported
are also consistent with this conclusion. For instance,
the static response function in the desynchronized-
synchronized equilibrium transition of the Kuramoto model
[45,46] diverges at the critical point. It is worth noting that
in the quantum system (for example, Rydberg atoms [47]),
we also observed the divergent behavior of dynamic
indicators near the critical point, indicating the potential
application of our theory in quantum physics. However, in
topological phase transitions without local order parame-
ters, the proposed method in this work is not applicable.
How to predict critical points in these systems is worthy of
further investigation.

In summary, we have proposed two prediction indicators
for the critical points of magnetization switching driven by
magnetic fields and STT in magnetic systems. In the case of
magnetic field-driven switching, by applying a transverse
static disturbance field B, the response m, diverges as B,

approaches the critical point B,., serving as a noise-resilient
predictive indicator. By replacing the static disturbance
with a uniformly distributed disturbance and performing
multiple measurements to obtain the variance of the order
parameter, we found that for first-order phase transitions,
the maximum variance depends only on the difference of
the order parameter across the critical point and is inde-
pendent of the disturbance magnitude. However, for sec-
ond-order phase transitions, the maximum variance is
proportional to the 2ath power of the disturbance magni-
tude. Near the critical point, the variance is proportional to
the 2(a-1)th power of the difference between the critical
point and the variable. Using this property, we calculate the
temperature critical exponent of a 50 x 50 two-dimensional
Ising model and get 0.121, which is close to the theoretical
value of 0.125. For STT-driven magnetization switching,
applying a transverse disturbance field oscillating at the
ferromagnetic resonance frequency, the response m, at
frequency w, rapidly increases as J,, approaches the
critical point J ., also serving as a noise-resilient predictive
indicator. Finally, we demonstrate that this framework
is applicable to general first-order linear systems. Our
approach offers predictive indicators for determining criti-
cal points in both equilibrium and nonequilibrium phase
transitions, which is computationally and experimentally
cost-effective, easy to implement, and robust against
thermal fluctuations. Our work has potential applications
in enhanced magnetic sensors, MRAM device tests,
dynamic control of spin torque oscillators, designing
new magnetic materials, and serving as warning signals
of critical points in complex systems.
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