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Determining critical points of phase transitions from partial data is essential to avoid abrupt system
collapses and to reduce experimental or computational costs. However, the complex physical systems and
phase transition phenomena have long hindered the development of unified approaches applicable to both
equilibrium and nonequilibrium phase transitions. In this Letter, we propose predictive indicators to determine
critical points in equilibrium and nonequilibrium magnetic systems based on the frequency-dependent
response function. For equilibrium phase transitions, such as magnetization switching under a magnetic field,
the static magnetization response function to a perturbing magnetic field diverges at the critical field, serving
as a noise-resilient predictive indicator that also reflects the transition order and critical exponents. In contrast,
for nonequilibrium phase transitions such as magnetization switching driven by transfer torque, static
response fails to signal criticality. Instead, the dynamic response at ferromagnetic resonance frequency
diverges at the critical point, which is also robust against thermal noise. We further demonstrate that these
static and dynamic indicators can be unified in the frame of first-order linear differential systems, offering a
generalizable strategy for predicting criticality in both equilibrium and nonequilibrium transitions.
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Phase transition is an emergent [1–3] phenomenon that
widely exists in physical systems [4–7], biological systems
[8–12], and socioeconomic networks [13]. Predicting the
critical point of phase transitions helps avoid sudden
system collapses, reduces the cost of experiments and
simulations, and aids in understanding emergent behaviors.
For example, in spintronics, predicting the critical current
[14–19] is essential for stabilizing magnetic random-access
memory (MRAM) devices. Several works have proposed
significant methods for predicting critical points, such as
mean-field theory [20], Landau’s theory of phase transi-
tions [21], renormalization group [22], machine learning
[23–25], dynamical equation analysis [14–19], and critical
slowing down and variance increase analysis [8,26,27].
These methods require prior knowledge of the system’s
Hamiltonian or dynamical equations or necessitate dense
sampling near the critical point. For unknown systems,
determining the critical point based on partial data is an
interesting and challenging task.
There are distinctions in the phase transition mechanisms,

critical behaviors, and researchmethods between equilibrium
and nonequilibrium phase transitions, while studies on their

connections are relatively scarce. Complex research systems
and phase transition phenomena have hindered the develop-
ment of general methods for determining the critical points of
both equilibrium and nonequilibrium phase transitions.
Magnetic systems, however, exhibit both types of phase
transitions and have clear physical pictures. On the one hand,
the magnetization can be switched by a magnetic field, and
the phase transition occurs due to changes in the minimum of
the free energy, which belongs to equilibrium phase tran-
sitions. On the other hand, in cases where magnetization
is switched using transfer torque (STT) [28], orbit torque
[29,30], or laser [31–35], the phase transition arises from
dynamic instability caused by the injection of energy
flow, which belongs to nonequilibrium phase transitions.
Therefore, magnetic systems serve as an ideal platform for
studying both types of phase transitions. However, a unified
method for predicting the critical points of equilibrium and
nonequilibrium phase transitions in magnetic systems is
currently lacking and remains an open question.
In this Letter, we propose two appropriate prediction

indicators for critical points in equilibrium and nonequili-
brium magnetic systems. We calculate the cases of magnetic
field- and STT-driven ferromagnet switching with perpendi-
cular magnetic anisotropy, corresponding to equilibrium and
nonequilibrium phase transitions, and study the response
function of magnetization to a transverse disturbance field.
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Additionally, we explore how to utilize the static response to
determine the transition order and critical exponents of
equilibrium phase transitions. Finally, we generalize these
two indicators to first-order linear dynamical systems.
Predicting the critical magnetic field for magnetization

switching is crucial for designing new magnetic materials
and improving magnetic device stability. For a ferromagnet
with perpendicular magnetic anisotropy subjected to a
constant magnetic field Bz in the z direction and an
oscillatory perturbative field Bx ¼ Bx0 cosðωtÞ in the x
direction, the double-well potential model describing the
system’s energy is illustrated in Fig. 1(a). If the initial state is
down, as the Bz gradually increases, the energy of the down
state gradually increases. When it exceeds the barrier, the
magnetization undergoes a switching, which is an equilib-
rium phase transition process, and the state of the system is
determined by minimizing the free energy. In order to study
the effect of Bx on the magnetization, we calculated the
response function of mx to Bx, which is defined as

χ0ðt − t0Þ ¼ mxðtÞ
Bxðt0Þ

: ð1Þ

Its Fourier transform χ̃0ðωÞ reflects the amplitude of the mx
oscillation at frequency ω. By first linearizing the Landau-
Lifshitz-Gilbert (LLG) equation up to the first-order terms of
mx and my, then performing the Fourier transformation on
the equation, and finally calculating the frequency response
of mx with respect to Bx, one can obtain

χ̃0ðωÞ ¼
α2ðBzmz þKm2

zÞ þBzmz þK − i μSαð1þα2Þ
γ ωh

αðBzmz þKm2
zÞ− i μsð1þα2�Þ

γ ω
i
2 þ ðBz þKmzÞ2

:

ð2Þ

Here, K is the anisotropy field, μs is the saturation
magnetization, and γ is the gyromagnetic ratio. For a detailed
derivation, please refer to Supplemental Material Sec. A
[36]. The dependence of jχ̃0ðωÞj on ω and Bz is shown in
Fig. 1(b). Here, Bc ¼ K represents the critical magnetic
field, and ωc ¼ γK=μs represents the ferromagnetic reso-
nance frequency in the absence of an external magnetic field,
Bx0 ¼ 0.01Bc. As shown in Fig. 1(b), jχ̃0ð0Þj increases
rapidly as Bz approaches Bc, which suggests that we can use
jm̃xð0Þj as a predictive indicator for the magnetization
switching. Substituting ω ¼ 0 and mz ¼ −1 into Eq. (2),
we can obtain

χ̃0ð0Þ ¼
1

−Bz þ K
: ð3Þ

The relationship between jχ̃0ð0Þj and jχ̃0ðωcÞj with respect
to Bz for the lower half branch of the hysteresis loop is
shown in Fig. 1(c). We can observe that jχ̃0ð0Þj increases
rapidly as Bz approaches Bc, while jχ̃0ðωcÞj gradually
decays, which is consistent with the results of past experi-
ments [37,38] and theoretical studies [39–41]. This is
because the increase in Bz destroys the resonance condition.
The relative error, RE ¼ jχ̃ð0Þ − χ̃0ð0Þj=½χ̃ð0Þ þ χ̃0ð0Þ�,
where χ̃ð0Þ is a simulated response function using the
LLG equation with respect to Bz, varies as shown in
Fig. 1(d). Near Bc, the RE increases rapidly, because the
deviation of magnetization becomes larger near Bc, violating
the assumption jmxj ≪ 1. The dependence of RE on Bz
and Bx0 is shown in Fig. 1(e). We can observe that as Bz
approaches Bc and Bx0 gradually increases, the RE
increases, which is also due to the increased magnetization
deviation. Finally, thermal noise is introduced, and the
temperature T dependence of jm̃xð0Þj is calculated at
Bz ¼ 0.5Bc, as shown in Fig. 1(f). Each temperature is
repeated 20 times. It shows that the temperature has almost
no effect on the mean value of jm̃xð0Þj, but the variance
increases as the temperature rises. This demonstrates the
temperature robustness of jm̃xð0Þj as a predictive indicator
for magnetization switching.
In the previous section, it is demonstrated that the

response of an equilibrium magnetic system to a static
perturbation magnetic field is amplified near the critical
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FIG. 1. (a) Energy landscape of a double-well potential
representing the equilibrium magnetic system under Bx ¼
Bx0 cosðωtÞ and Bz > 0. (b) The dependence of response function
jχ̃0ðωÞj on the dc magnetic field Bz and ac perturbation magnetic
field’s frequency ω. (c) The dependence of jm̃xðωÞj on Bz at
ω ¼ 0 and ωc for the lower half branch of the hysteresis loop with
Bx0 ¼ 0.01Bc. (d) Relative error (RE) between jm̃xð0Þj and
jm̃x0ð0Þj. (e) The RE as a function of Bz and Bx0. (f) The
jm̃xð0Þj dependence on the temperature T at Bz ¼ 0.5Bc.
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point. Interestingly, by utilizing this property, we can
determine the transition order and the critical exponent
of the equilibrium phase transition. For the first-order phase
transition system shown in Fig. 1(a), linearizing the
equilibrium LLG equation solves analytically for mz under
a small uniform transverse perturbation Bx from −Bx0 to
Bx0 and computes the variances of mz as follows:

VarðmzÞ ¼ 2B4
x0=½45ðBz − BcÞ4�; ð4Þ

and the max value is

VarðmzÞmax ¼ 1: ð5Þ
For a detailed derivation, please refer to Supplemental
Material Sec. B [36]. The dependence of VarðmzÞ on Bz is
shown in Fig. 2(a). It is worth noting that the maximum
value of VarðmzÞ does not depend on Bx0, but only on the
difference in magnetization before and after the critical
point. For the case of a second-order phase transition, we
take the ferromagnetic-to-paramagnetic transition in two-
dimensional Ising model as an example. As shown in
Fig. 2(b), a 50 × 50 Ising model is subject to a constant
magnetic field h0 and a perturbation temperature ΔT,
which follows a uniform distribution from −ΔT0 to ΔT0.
The magnetization mz and VarðmzÞ as a function of
temperature are shown in Fig. 2(c) with exchange inter-
action energy J ¼ 1, Boltzmann’s constant kB ¼ 1, h0 ¼ 0,
and ΔT0 ¼ 0.2. Near the critical temperature, Tc ¼ 2.269,
the magnetization approximately follows mz ∝ ðTc − TÞα,
where α is the critical exponent that is ideally equal to
0.125 [42]. The dependence of VarðmzÞ on T is

VarðmzÞ ¼
1

3
ðTc − TÞ2α−2ΔT2

0; ð6Þ

and the max value is

VarðmzÞmax ∝ ðΔT0Þ2α: ð7Þ
By comparing Eqs. (4) and (6) and Eqs. (5) and (7), two
interesting conclusions can be extracted. First, while the
peak value of the variance remains independent of pertur-
bation strength in first-order transitions, it strongly depends
on it in second-order cases. Second, in the case of second-
order transitions, the critical exponent α can be extracted by
examining the scaling behavior of the variance near the
critical point. Specifically, the scaling behavior of VarðmzÞ
is plotted on a logarithmic scale and performs a linear fit
in the vicinity of the transition critical point, as shown in
Fig. 2(d). The estimate α ≈ 0.121 is in close agreement with
the theoretical prediction, 0.125. Deviations from linearity

observed far from the critical point arise due to the
breakdown of the approximation mz ¼ ½1 − sinh−4ðlnð1þffiffiffi
2

p ÞTc=TÞ�1=8 ≈ ð1 − T=TcÞ1=8, which holds only in the
regime ðTc − TÞ=Tc ≪ 1.
Compared to equilibrium phase transitions, due to the

lack of a unified theoretical framework and the complexity
of research systems and phenomena, nonequilibrium
phase transitions have been relatively less studied.
However, ferromagnetic systems can serve as a simple
and clear physical model. Considering a ferromagnet with
perpendicular magnetic anisotropy subjected to a constant
STT Jstt polarized in the z direction, a constant magnetic
field Bz in the z direction, and an oscillatory perturbation
magnetic field Bx ¼ Bx0 cosðωtÞ along the x direction,
the double-well potential model is illustrated in Fig. 3(a).
Unlike magnetic field-driven magnetization switching,
STT-driven magnetization switching occurs by destabiliz-
ing the system from its equilibrium point rather than
altering the system’s energy landscape. When the STT is
sufficiently large to push the system over the energy barrier,
the magnetization switches, which belongs to the non-
equilibrium phase transition process. Conclusions drawn
from previous studies on equilibrium phase transitions are
valid. Therefore, by using the same method as in Eq. (2),
and taking into account the influence of STT in the LLG
equation, we can obtain the response function as

χ̃0ðωÞ ¼
α½Jsttmz þ αðBzmz þ Km2

zÞ� þ Bzmz − αJsttmz þ K − i μsαð1þα2Þ
γ ω

ðJsttmz þ αðBzmz þ Km2
zÞ − i μsð1þα2Þ

γ ωÞ2 þ ðBz − αJstt þ KmzÞ2
ð8Þ
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FIG. 2. (a) The perturbation-induced variance VarðmzÞ of the
lower half part of the hysteresis loop as a function of Bz. (b) A
50 × 50 Ising model subject to a constant magnetic field h0 and a
perturbation temperature ΔT. (c) A combined plot of magneti-
zation mz and Var(mz) as a function of T with h0 ¼ 0 and
ΔT0 ¼ 0.2. (d) The relationship between Var(mz) and temper-
ature T near the critical point Tc ≈ 2.269.
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Substituting ω ¼ 0 and mz ¼ −1 into Eq. (8), we can
obtain

χ̃0ð0Þ ¼
K − Bz

J2stt þ ðBz − KÞ2 ð9Þ

The detailed derivation is in Supplemental Material Sec. C
[36]. From Eq. (9), it can be seen that as the absolute value
of Jstt increases, the static response function decreases
monotonically. Clearly, it cannot serve as an indicator for
predicting phase transitions. Therefore, we analyze the
situation at the critical current, substituting Jstt ¼ Jc ¼
−αðBz þ KmzÞ and mz ¼ −1 in Eq. (8). To simplify the
physical picture, we consider the case where Bz ¼ 0. It
follows that

χ̃0ðωÞjJstt¼Jc ¼
K − iα μs

γ ω

ðα2 þ 1Þ
�
K2 −

�
μs
γ ω

�
2
�
:

ð10Þ

Therefore, when ω ¼ ωc, the response function tends to
diverge at the critical point, and jχ̃0ðωcÞj is

jχ̃0ðωcÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
K

ðαK − JsttÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJstt þ αKÞ2 þ 4K2

p : ð11Þ

The dependence of the response function on ω and Jstt is
shown in Fig. 3(b). It can be observed that jχ̃0ðωcÞj
increases rapidly as Jstt approaches Jc, indicating that
we can use jm̃xðωcÞj as a predictive indicator for STT-
driven magnetization switching. The dependence of
jm̃xð0Þj and jm̃xðωcÞj on Jstt for the lower half of the
hysteresis loop is shown in Fig. 3(c). As Jstt approaches Jc,
jm̃xðωcÞj increases rapidly, while jm̃xð0Þj gradually decays,
which is exactly the opposite of the situation where the
magnetization is switched by magnetic field. It is consistent
with the results of past experiments [43,44]. Interestingly, it
shows that when the magnetic system is in a resonant state,
its response to external disturbances is amplified, while its
response to internal disturbances is suppressed. We calcu-
late the relative error, as shown in Fig. 3(d). Near Jc, the
RE increases rapidly because the magnetization deviation
from the equilibrium state increases. It is worth noting that
for the same Bx0, the magnetization in the resonant state
deviates from the equilibrium state much more than not
in the resonant state. Therefore, in the calculations of
Figs. 3(c)–3(f), Bx0 ¼ 10−5Bc, which is 1=1000 that in
Fig. 1. The dependence of RE on Jstt and Bx0 is shown in
Fig. 3(e). It can be seen that as Jstt and Bx0 increase, RE
increases rapidly, which is also because of the increased
magnetization deviation. Finally, we calculate the effect of
thermal noise on jm̃xðωcÞj at Jstt ¼ 0.5Jc, as shown in
Fig. 3(f). By repeating the calculation 20 times at each
temperature, it can be observed that as the temperature
increases, the mean value of jm̃xðωcÞj remains essentially
unchanged, but the variance gradually increases, which is
similar to the situation when the magnetic field switches
the magnetization, reflecting the temperature robustness of
jm̃xðωcÞj as a critical prediction indicator. Dynamic
response under weak transverse perturbation provides a
sensitive indicator of approaching the critical point in
MRAM devices, offering an early warning of write/read
failure, instability, and inhomogeneity. This method also
establishes a predictive and stabilizing mechanism for
reliable spin torque oscillator operation.
Based on the above analysis, it is demonstrated that

for magnetization switching driven by magnetic fields and
STT, the response amplitude of mx under perturbation
fields at frequencies of 0 and ωc can serve as predictive
indicators for critical points. It is interesting to generalize
this approach to more general systems. For a system
exhibiting both equilibrium and nonequilibrium phase
transitions, assume it follows a first-order linear differential
equation,
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FIG. 3. (a) Energy landscape of a double-well potential
representing the nonequilibrium magnetic system under
Bx ¼ Bx0 cosðωtÞ and spin transfer torque strength Jstt.
(b) The dependence of response function jχ̃0ðωÞj on the Jstt
and ac perturbation magnetic field’s frequency ω. (c) The
dependence of jm̃xðωÞj on Jstt at ω ¼ 0 and ωc for the lower half
branch of the hysteresis loop with Bx0 ¼ 10−5Bc. (d) Relative
error between jm̃xðωcÞj and jm̃x0ðωcÞj. (e) The RE as a function
of Jstt and Bx0. (f) The jm̃xðωcÞj dependence on the temperature
T at Jstt ¼ 0.5Jc.
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dXðtÞ
dt

¼ AXðtÞ þBðtÞ: ð12Þ

In the equation, X is an n-dimensional vector composed of
order parameters, A is the dynamic coefficient matrix, and
B is the input vector that determines the steady state of the
system. The eigenvalues λiði ¼ 1; 2;…; nÞ of A are ordered
according to their real parts, with the assumption that
Reðλ1Þ ≥ Reðλ2Þ ≥ � � � ≥ ReðλnÞ. When the system is at
the critical point of an equilibrium phase transition, it must
hold that Reðλ1Þ ¼ 0. Since the system is in equilibrium
and there is no external energy input, oscillations cannot
occur at the critical state. Therefore, Imðλ1Þ ¼ 0 holds true
and detðAÞ ¼ 0, which implies that for a static small
perturbation, the response of X, which is A−1B, tends to
diverge as the system approaches the critical point. For
example, in the case of magnetic field-driven magnetization
switching, λ1;2¼−γ=½μsð1þα2Þ�½αð−BzþKÞ� iðBz−KÞ�,
BðtÞ ¼ γ=½μsð1þ α2Þ�ðα; 1ÞTBx0, at the critical magnetic
field Bc ¼ K, Reðλ1Þ ¼ Imðλ1Þ ¼ 0. However, for non-
equilibrium phase transitions, the situation is totally differ-
ent. At the critical point, there still exists Reðλ1Þ ¼ 0, but
injection of external energy flow enables the oscillatory
behavior, which is a main difference between equilibrium
and nonequilibrium phase transitions. Therefore, Imðλ1Þ
may not equal 0 at the critical point, and Hopf bifurcation
may occur. For a constant perturbation, the response of X
may not tend to diverge at the critical point. For instance,
in the case of STT-driven magnetization switching dis-
cussed above, λ1;2¼−γ=½μsð1þα2Þ�½−JSTTþαðK−BzÞ�
iðBz−αJSTT−KÞ�, and at the critical current Jc ¼
αðK − BzÞ, Reðλ1;2Þ ¼ 0, Imðλ1;2Þ ¼ �iγðK − BzÞ=μs.
However, if the perturbation has a frequency of
ωc ¼ j Imðλ1Þj, the response of X will gradually diverge
as the system approaches the critical point. Therefore, X̃ð0Þ
and X̃ðωcÞ can serve as predictive indicators for the critical
point in equilibrium and nonequilibrium phase transition,
respectively. Several significant works previously reported
are also consistent with this conclusion. For instance,
the static response function in the desynchronized-
synchronized equilibrium transition of the Kuramoto model
[45,46] diverges at the critical point. It is worth noting that
in the quantum system (for example, Rydberg atoms [47]),
we also observed the divergent behavior of dynamic
indicators near the critical point, indicating the potential
application of our theory in quantum physics. However, in
topological phase transitions without local order parame-
ters, the proposed method in this work is not applicable.
How to predict critical points in these systems is worthy of
further investigation.
In summary, we have proposed two prediction indicators

for the critical points of magnetization switching driven by
magnetic fields and STT in magnetic systems. In the case of
magnetic field-driven switching, by applying a transverse
static disturbance field Bx0, the response mx diverges as Bz

approaches the critical point Bc, serving as a noise-resilient
predictive indicator. By replacing the static disturbance
with a uniformly distributed disturbance and performing
multiple measurements to obtain the variance of the order
parameter, we found that for first-order phase transitions,
the maximum variance depends only on the difference of
the order parameter across the critical point and is inde-
pendent of the disturbance magnitude. However, for sec-
ond-order phase transitions, the maximum variance is
proportional to the 2αth power of the disturbance magni-
tude. Near the critical point, the variance is proportional to
the 2ðα-1Þth power of the difference between the critical
point and the variable. Using this property, we calculate the
temperature critical exponent of a 50 × 50 two-dimensional
Ising model and get 0.121, which is close to the theoretical
value of 0.125. For STT-driven magnetization switching,
applying a transverse disturbance field oscillating at the
ferromagnetic resonance frequency, the response mx at
frequency ωc rapidly increases as Jstt approaches the
critical point Jc, also serving as a noise-resilient predictive
indicator. Finally, we demonstrate that this framework
is applicable to general first-order linear systems. Our
approach offers predictive indicators for determining criti-
cal points in both equilibrium and nonequilibrium phase
transitions, which is computationally and experimentally
cost-effective, easy to implement, and robust against
thermal fluctuations. Our work has potential applications
in enhanced magnetic sensors, MRAM device tests,
dynamic control of spin torque oscillators, designing
new magnetic materials, and serving as warning signals
of critical points in complex systems.
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