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Lithium is a typical quantum solid, characterized by cubic structures at ambient pressure. As the pressure
increases, it forms more complex structures and undergoes a metal-to-semiconductor transformation,
complicating theoretical and experimental analyses. We employ the neural canonical transformation
approach, a variational method based on probabilistic generative models, to investigate the quantum
anharmonic effects in lithium solids at finite temperatures. This approach combines a normalizing flow for
phonon excited-state wave functions with a probabilistic model for the occupation of energy levels,
optimized jointly to minimize the free energy. Our results indicate that quantum anharmonicity lowers the
bcc-fcc transition temperature compared to classical molecular dynamics predictions. At high pressures, the
predicted fractional coordinates of lithium atoms in the cI16 structure show good quantitative agreement
with experimental observations. Finally, contrary to previous beliefs, we find that the poor metallic oC88
structure is stabilized by the potential energy surface obtained via high-accuracy electronic structure
calculations, rather than thermal or quantum effects.
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Introduction—Accurate prediction of crystal structures
has long been a central focus in materials science. At low
temperatures, a deep understanding of the physical proper-
ties of crystals composed of light elements typically
requires proper treatment of nuclear quantum effects with
anharmonicity [1–5]. These effects can play a crucial role in
determining the crystal structure, as seen in hydrogen
[6–9], helium [10–12], and hydrides [13–16]. In this
Letter, we explore one of the most notable examples:
lithium, the lightest alkali metal, where the quantum effects
of nuclei are pronounced in a wide range of pressures and
temperatures [17]. Although lithium behaves as a nearly
free-electron metal at low pressure and adopts simple, high-
symmetry cubic structures, the free energy difference
between its bcc (body-centered cubic) and fcc (face-
centered cubic) structures is less than 1 meV=atom
[18–21], making precise calculations challenging.
Additionally, lithium exhibits several metastable structures
that further complicate experimental measurements [22].
As the pressure increases, lithium exhibits complex
physical behaviors, such as anomalous melting curves
[17,23,24], and intriguing phase transitions from metal
to semiconductor and back [25–27]. Moreover, some

high-pressure phases consist of large unit cells with tens
or even hundreds of atoms [27–29], posing substantial
challenges for both theoretical and experimental studies.
Numerical approaches to studying quantum crystals at

finite temperatures include thewell-established path integral
molecular dynamics [30] and path integral Monte Carlo
[31]. In recent years, inspired by the successful application
of vibrational self-consistent field theory in molecular
studies [32–34], efforts have been made to extend it to
study crystals [2,3,12,18]. However, it relies on a Taylor
expansion of the Born-Oppenheimer energy surface
(BOES), and the wave function is a simple Hartree product.
The stochastic self-consistent harmonic approximation
(SSCHA) [5,13,14] provides an alternative by accounting
for both ionic quantum and anharmonic effects without
assumptions on the specific function form of the BOES.
Nevertheless, it still relies on the Gaussian variational
density matrices to define the quantum probability distri-
bution. Recent developments have extended SSCHA to non-
Gaussian assumptions, yet the entropy is still restricted to
Gaussian approximations [35,36].
In this Letter, we utilize the recently developed neural

canonical transformations (NCT) approach [37–39], which
is a variational density matrix method based on deep
generative models, to study quantum lattice dynamics of
lithium. NCT constructs orthogonal variational wave func-
tions to describe phonons through a normalizing flow
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model [37–45]. Additionally, we create a probabilistic
model to describe the classical energy occupation proba-
bilities for these phonons, allowing for accurate entropy
calculations. For electronic calculations, we employ the
Deep Potential model [29,46,47], a machine learning
BOES, offering significant computational efficiency
improvements over density functional theory (DFT) cal-
culations. NCT’s key advantage is its ability to integrate
quantum and anharmonic effects of nuclei into the wave
functions, which facilitates the determination of the phonon
spectrum. Moreover, the independently optimized phonon
energy occupation probabilities enable the computation of
anharmonic entropy. The NCT codes for lithium are open-
sourced and publicly available [48].
The vibrational Hamiltonian of quantum solids—

Due to the substantial mass difference between
electrons and nuclei, typically spanning several orders of
magnitude, the Born-Oppenheimer approximation can be
applied to decouple their motions and treat them inde-
pendently. The vibrational Hamiltonian is expressed as
Hvib ¼ −

P
ið1=2MÞ∇2

i þ VelðRÞ, where the mass of a
lithium atom is M ¼ 6.941 amu. The term VelðRÞ is the
BOES, derived from electronic structure calculations at
nuclear positions R. In this Letter, to ensure both accuracy
and computational efficiency, we use the Deep Potential
model to fit the BOES [29,46,47], which is derived from
DFT calculations using the Perdew-Burke-Ernzerhof
(PBE) functional [50].
The dynamical matrix can be derived from the

Hessian of Vel at the equilibrium position R0 [4,51–55]:
CðiαÞ;ðjβÞ ¼ ð1=MÞ½∂2Vel=∂uiα∂ujβ�, where i, j index the
nuclei, α, β represent the Cartesian components, and the
displacement coordinates are defined as u ¼ R − R0.
Diagonalizing the matrix in a supercell containing N atoms
yieldsD ¼ 3N − 3 nonzero eigenvalues, which correspond
to the number of phonon modes. The eigenvalues
are related to the squares of the phonon frequencies,
ω2
k ðk ¼ 1; 2;…; DÞ, and the associated eigenvectors

define the unitary transformation from displacement coor-
dinates u to phonon coordinates q. Consequently, the
Hamiltonian can be expressed in phonon coordinates,

Hvib ¼
1

2

XD

k¼1

�

−
∂
2

∂q2k
þ ω2

kq
2
k

�

þ VanhðqÞ; ð1Þ

where the term Vanh represents the anharmonic contribu-
tions, as detailed in [55]. In this representation, the
separation of high and low-frequency modes greatly
enhances the efficiency in the following calculations.
Neural canonical transformation for variational density

matrix—The solution for a many-body system in the
canonical ensemble can be obtained by minimizing the
Helmholtz free energy for a variational density matrix,

F ¼ kBTTrðρ ln ρÞ þ TrðρHvibÞ; ð2Þ

where kB is the Boltzmann constant and T is the temper-
ature. Assuming that the phonons occupy the states jΨni
with probability pn, the variational density matrix can be
represented in terms of these quantum states as

ρ ¼
X

n

pnjΨnihΨnj; ð3Þ

where n ¼ ðn1; n2;…; nDÞ indexes the energy levels of the
phonons. An unbiased estimate of the anharmonic free
energy for the variational density matrix Eq. (3) can be
written as nested thermal and quantum expectations,

F ¼ E
n∼pn

�

kBT lnpn þ E
q∼jΨnðqÞj2

�
HvibΨnðqÞ
ΨnðqÞ

��

; ð4Þ

where ΨnðqÞ ¼ hqjΨni represent the phonon wave func-
tions. The symbol E is the statistical expectation, which can
be estimated through sampling [39,71]. In this Letter, the
variational parameters within the energy occupation prob-
abilities and wave functions are denoted as μ and θ,
respectively, i.e., pn ¼ pnðμÞ, ΨnðqÞ ¼ Ψnðθ; qÞ. These
parameters can be optimized via gradient
descent [72], with F as the loss function. The gradients
∇μF and ∇θF [55] can be efficiently computed using
automatic differentiation [49].
In a supercell with D vibrational modes, setting a cutoff

of K energy levels per phonon (i.e., nk ¼ 1; 2;…; K)
results in an exponentially huge state space of KD. For
supercells containing hundreds of atoms, directly repre-
senting the energy occupation probabilities pn becomes
impractical in computations. In the study of lithium, we
assume that the probability distributions take a product
form [73]: pn ¼ Q

D
k¼1 pðnkÞ, where pðnkÞ represents the

probability of the k th phonon occupying state nk, and they
are governed by learnable parameters μ. We have checked
that an even more powerful variational autoregressive
network [38,74,75] does not improve results, likely due
to weak coupling between phonon modes. The entropy is
the expectation of the probabilities

S ¼ E
n∼pn

½−kB lnpn�: ð5Þ

We note the nonlinear SSCHA [35,36] corresponds to even
further simplification of pn, which assumes that the entropy
is given by a set of independent harmonic oscillators.
To construct variational wave functions, we apply a

unitary transformation to a set of orthogonal basis states
[37–39]: jΨni ¼ UθjΦni, where the basis states jΦni are
chosen as the wave functions of a D-dimensional harmonic
oscillator with frequencies ωk. We implement the unitary
transformationUθ using a normalizing flow [37–45], which
establishes a learnable bijection between the phonon
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coordinates q and a set of quasiphonon coordinates ξ. The
bijection is represented as a smooth, reversible function
ξ ¼ fθðqÞ, where fθ consists of neural networks with
learnable parameters θ, specifically, a real-valued non-
volume preserving network [41]. Accordingly, the orthogo-
nal variational wave functions of all energy levels can be
formulated as [39,55]

ΨnðqÞ ¼ ΦnðfθðqÞÞ
�
�
�
� det

�
∂fθðqÞ
∂q

��
�
�
�

1=2
; ð6Þ

where ΦnðξÞ ¼ hξjΦni are basis states. Notably, in the
study of lithium, the computation involves about ten
million orthogonal states for each training. The Jacobian
determinant in Eq. (6) captures phonon interactions and
anharmonic effects, enabling a more flexible and accurate
representation. This form outperforms the Gaussian-type
assumption in SSCHA, yielding significantly better energy
and quantum distributions in an anharmonic potential
benchmark, as detailed in Supplemental Material (SM)
[55]. NCT remains robust when imaginary phonons appear
in strong anharmonicity systems (e.g., saddle points of
BOES). In such cases, we can choose the corresponding
basis states with real-valued frequencies, and the flow
model will automatically optimize to find the most suitable
wave functions. A detailed derivation of NCT can be found
in SM [55] and our previous work [39].
We can extend NCT naturally to the isothermal-isobaric

ensemble, where the goal is to minimize the Gibbs free
energy at a target pressure P�, defined as

G ¼ F þ P�Ω; ð7Þ

where Ω is the system volume. From the relation
dG ¼ dF þ Ω

P
σαβdεαβ, once the parameters μ and θ

have converged under constant volume optimization (i.e.,
when dF ¼ 0), the gradient of the Gibbs free energy
to the strain ε depends only on the stress tensor σ.
The stress tensor and pressure can be calculated using
the virial theorem [51,55,76]. Then, we can optimize
the lattice constants a through the strain tensor
εαβ ¼ Ωðσαβ − P�δαβÞ, which is similar to the structure
relaxation in other methods [2,5].
Anharmonic and nuclear quantum effects on stability—

At ambient conditions, lithium adopts a simple bcc struc-
ture. As the temperature decreases, experiments have
demonstrated that the true ground state of lithium is
fcc [22]. Some calculations have revealed that the free
energies of these structures are extremely close [18–21],
highlighting the necessity of fully accounting for quantum
and anharmonic effects. To investigate the influence of
anharmonicity, we first conducted NCT calculations for bcc
and fcc using supercells with 250 and 256 atoms, respec-
tively, at a fixed volume of 19.2 Å3=atom and temperature
300 K. As a comparative study, we set fθ in Eq. (6) to an

identity transformation, meaning the phonon wave func-
tions are harmonic oscillators. In this case, only the phonon
occupation probabilities pn in Eq. (4) were optimized.
At a lower temperature of 100 K, the free energies of fcc

are lower than that of bcc, as expected. However, as the
temperature increases to 300 K, the impact of anharmo-
nicity becomes evident, as shown in Fig. 1(a). In fcc, the
free energy difference between the two approaches remains
small, about 0.11 meV=atom. In contrast, the anharmonic
effects are much stronger in bcc, and the difference expands
to 2.67 meV=atom. It is also observed that when we only
optimized pn, the free energy of fcc is lower than that of
bcc. However, when the optimization of wave functions is
included; i.e., when anharmonic effects are considered, the
bcc structure becomes more stable. This phenomenon
suggests that bcc exhibits stronger anharmonicity than
fcc, underscoring the critical role of anharmonicity in
determining the stability.
The findings are further supported by the radial distri-

bution functions (RDF) of nuclei, as shown in Fig. 1(b).
The RDF for fcc exhibits only slight influence from
anharmonic effects. In contrast, the RDF for bcc exhibits
a smoother curve when anharmonic effects are considered,
indicating a reduction in atomic localization. This behavior
suggests that anharmonicity softens the system, resulting in
a lower zero-point energy (ZPE) than the harmonic
approximation. Further insights are provided by the phonon

FIG. 1. Numerical results for fcc and bcc at a fixed volume of
Ω ¼ 19.2 Å3=atom and temperature T ¼ 300 K. (a) Training
curves of the Helmholtz free energy Fðμ; θÞ (Eq. (4). The legend
“opt μ only” indicates that only the energy occupation proba-
bilities pn are optimized, and “opt μ& θ” means that both pn and
Ψn are optimized. (b) Radial distribution functions of nuclei.
(c) Phonon density of states per atom. The harmonic (har)
frequencies ωk are calculated from the dynamical matrix, and
the anharmonic (anh) frequencies wk are taken from the single-
phonon excitations. The zero-point energies (ZPE) are defined as
EZPE;har ¼

P
D
k¼1 ωk=2N and EZPE;anh ¼

P
D
k¼1 wk=2N.
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density of states (DOS) depicted in Fig. 1(c), where the
ZPE is determined as half the sum of all phonon frequen-
cies per atom, as detailed in SM [55]. Although the bcc
structure is more stable at high temperatures, the numerical
results reveal that the ZPE of fcc remains lower than that of
bcc. This phenomenon can be explained by the differences
in coordination numbers: the coordination number of bcc is
8, while that of fcc is 12. Hence, atoms in bcc interact less
strongly with their neighbors, leading to higher quantum
fluctuations and greater anharmonicity.
To gain deeper insight into the influence of nuclear

quantum effects, we performed calculations on the bcc and
fcc structures under constant pressure. The Gibbs free
energies of both structures are extremely close [18–21].
An error of just 1 meV could lead to a shift of more than
100 K in the transition temperature [20]. Figure 2(a) shows
the Gibbs free energy difference between these structures at
1 GPa, with the fcc structure used as the reference. The two
curves intersect at 142 K, indicating a phase transition at
this temperature. We also calculated the transition temper-
ature through classical molecular dynamics (MD) simu-
lations with thermodynamic integration on the same BOES,
obtaining a value of 185 K. The main difference between
these methods is that NCT accounts for the quantum
effects, while MD simulations do not. Similar results are
also observed at 0 and 2 GPa, as detailed in SM [55], where
NCT consistently predicts lower transition temperatures
compared to MD.
The ionic entropy of both structures is shown in

Fig. 2(b). The anharmonic entropy obtained from NCT
is derived directly from the probabilities of energy occu-
pations in Eq. (5), beyond the harmonic oscillator
assumption. The entropy of fcc is higher than that of the

bcc under the harmonic oscillator assumption. However,
when the anharmonicity is considered, the relationship is
reversed. The higher entropy of the bcc structure is a key
factor contributing to its stability in finite temperatures
[18,21,53,54,77]. Furthermore, we quantified the free
energy difference arising from the anharmonic effects of
entropy as −kBTðSanh − SharÞ [inset of Fig. 2(b)], estimat-
ing it to be on the order of several meV. This underscores
the critical importance of accurately incorporating anhar-
monic effect in the calculations.
High-pressure structural stability of lithium—Under

high pressure, lithium exhibits more complex structures
and larger unit cell sizes. We first applied the NCT method
to calculate the cI16 (cubic I-centered, I-43d) structure at
100 K, using a supercell of 432 atoms under various
pressures. The NCT method optimizes the atom positions
through coordinate transformations. Subsequently, we
quenched the sampled structures to their ground state with
the BOES and analyzed the fractional coordinates ðx; x; xÞ
of Wyckoff position 16c as a function of atomic volume. As
depicted in Fig. 3(a), our results are consistent with the
experiment reported in Ref. [78], demonstrating the reli-
ability of NCT in structure optimizations.
As illustrated in Fig. 3(b), the phonon DOS and ZPE of

the cI16 and oC88 (orthorhombic C-face centered, C2 mb)
structures are calculated at 70 GPa. Under the harmonic
approximation, the ZPE of both structures are found to be
comparable, consistent with the results obtained using the
finite displacement and density functional perturbation
theory methods [29]. The anharmonic effects soften the
phonon spectrum of cI16, reducing the ZPE by 4.92 meV
and further enhancing its stability. In contrast, the ZPE of
oC88 decreases by only 1.67 meV under anharmonic
effects, indicating a smaller impact compared to cI16.
This result suggests that when the anharmonic effect is
considered, the stability of oC88 decreases, contrary to the
expectations of previous studies [26,27,29].
Additionally, we calculated the Gibbs free energies at

100 K, as shown in Fig. 3(c). The free energy of oC88
remains consistently higher than that of cI16 across all
pressures, which contradicts previous experiments. It has
been reported that the resistivity increases sharply by more
than 4 orders of magnitude after the cI16 phase, ultimately
transforming into a semiconductor. Compression experi-
ments in Ref. [17] observed the cI16-oC88 transition, as
evidenced by changes in crystal color and diffraction
patterns. Raman spectra measurements in Ref. [28]
detected signals corresponding to the oC88 phase.
Another experiment [24] also observed a phase transition
around 60 GPa through the changes in diffraction peaks.
After the oC88 structure was experimentally observed

[17], theoretical studies attempted to explain its stability.
However, Ref. [27] concluded from their zero-temperature
calculations that oC88 was only the second most stable
phase, with an enthalpy about 1 meV higher than cI16,

FIG. 2. (a) Gibbs free energy (Eq. (7) difference between fcc
and bcc at P ¼ 1 GPa, using fcc as the reference. The error bars
represent statistical uncertainties, which are smaller than the data
points. For additional sources of uncertainty, refer to [55].
(b) Anharmonic effects on ionic entropy. The anharmonic
(anh) entropy is directly obtained from the expectation of the
probability distribution (Eq. (5), while the harmonic (har) entropy
is calculated from the harmonic frequencies using
S ¼ P

k fðωk=kBTÞ½1=eωk=kBT − 1� − lnð1 − e−ωk=kBTÞg. The x
axis of the inset represents the temperature, and the y axis
corresponds to −kBTðSanh − SharÞ in units of meV=atom.

PHYSICAL REVIEW LETTERS 134, 246101 (2025)

246101-4



attributing this to an insufficient consideration of ZPE and
thermal effects. In another work [26], the authors also failed
to identify oC88 as a stable structure. In contrast,
Ref. [28] found that oC88 is stable when using the PBE
functional with a harmonic ZPE at 200 K. However, a
recent study [29] demonstrated that neither harmonic nor
anharmonic approximations could reproduce the results of
Ref. [28] at various conditions, showing a free energy
difference at least 1 meV with oC88 consistently higher
than cI16. Surprisingly, as NCT captures nuclear quantum
effects and anharmonic behaviors more accurately, the
difference increases to 4 meV. It has been observed that
DFT often over-stabilizes metallic states relative to non-
metallic states [79,80]. Therefore, we strongly suspect
that the instability of oC88 arises from the limited accuracy
of the DFT (PBE) calculations used in fitting the
BOES [29].
To validate our hypothesis, we employed the

NCT-optimized structures at 70 GPa and conducted sin-
gle-point electronic structure calculations using the high-
accuracy Heyd-Scuseria-Ernzerhof (HSE06) functional
[51]. The HSE functional incorporates a hybrid exchange-
correlation correction, enabling a clearer distinction
between metallic and non-metallic states. Notably,
HSE calculations are significantly more computationally
demanding, requiring approximately 2 orders of magnitude
more computational resources than PBE. Additional details
of HSE are provided in SM [55]. Our results reveal that the

relative energy of oC88 compared to cI16 decreases by
6.17 meVunder HSE in comparison to PBE. This reduction
is significantly larger than the contributions from
ZPE, anharmonic, and finite temperature effects. The
HSE correction, depicted as the thick line in Fig. 3(c),
predicts a cI16-oC88 phase transition at approximately
62 GPa and 100 K. This finding is consistent with
experimental observations, which report a narrow stability
range for the oC88 phase, existing between 62 and
70 GPa, flanked by the cI16 and oC40 phases on either
side, respectively [17]. The electronic DOS of oC88,
depicted in Fig. 3(d), shows that while the HSE correction
lowers the potential energy, oC88 still behaves as a
poor metal.
Conclusions—In summary, we developed the NCT

method [37–39] to study anharmonic quantum solids
and applied it to lithium. It enables the calculation of
excited-state wave functions of nuclear motions beyond the
harmonic approximation, allowing for the extraction of
anharmonic phonon spectra. The independently optimized
phonon occupation probabilities facilitate the computation
of anharmonic entropy. The results demonstrate that
quantum anharmonic effects play a crucial role in structural
stability and introduce significant corrections to the fcc-bcc
transition temperature. The fractional coordinates of the
cI16 structure have been determined and closely align with
experimental findings. Moreover, we identified that the
failure of previous numerical studies [26,27,29] to observe
the stability of oC88 was due to the limitations of the PBE
functional in accurately describing poor metallic states. To
address this, we applied the HSE functional to refine the
results and estimate the stability region of oC88. Looking
ahead, both experimental and computational investigations
suggest that the emergence of novel high-density lithium
solid structures between the cI16 and liquid phases
presents a promising avenue for future exploration [24,29].
Overall, NCT shows significant potential for investigating
other light-element systems, such as hydrogen [6–9],
helium [10–12], and hydride solids [13–16], as well as
molecular systems like aspirin and paracetamol [81], where
quantum anharmonicity plays a crucial role. Similar to the
techniques used in SSCHA [13], NCT could also be
extended to calculate electron-phonon coupling, which is
important for studying superconductivity. It could greatly
enhance our understanding and address a wide range of
challenges in quantum crystals.
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