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Universal non-Hermitian skin effect in two and
higher dimensions
Kai Zhang 1,2, Zhesen Yang 3✉ & Chen Fang 1,3,4✉

Skin effect, experimentally discovered in one dimension, describes the physical phenomenon

that on an open chain, an extensive number of eigenstates of a non-Hermitian Hamiltonian

are localized at the end(s) of the chain. Here in two and higher dimensions, we establish a

theorem that the skin effect exists, if and only if periodic-boundary spectrum of the Hamil-

tonian covers a finite area on the complex plane. This theorem establishes the universality of

the effect, because the above condition is satisfied in almost every generic non-Hermitian

Hamiltonian, and, unlike in one dimension, is compatible with all point-group symmetries. We

propose two new types of skin effect in two and higher dimensions: the corner-skin effect

where all eigenstates are localized at corners of the system, and the geometry-dependent-

skin effect where skin modes disappear for systems of a particular shape, but appear on

generic polygons. An immediate corollary of our theorem is that any non-Hermitian system

having exceptional points (lines) in two (three) dimensions exhibits skin effect, making this

phenomenon accessible to experiments in photonic crystals, Weyl semimetals, and Kondo

insulators.

https://doi.org/10.1038/s41467-022-30161-6 OPEN

1 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China. 2 University of
Chinese Academy of Sciences, 100049 Beijing, China. 3 Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, 100190 Beijing, China.
4 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. ✉email: yangzs@ucas.ac.cn; cfang@iphy.ac.cn

NATURE COMMUNICATIONS |         (2022) 13:2496 | https://doi.org/10.1038/s41467-022-30161-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30161-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30161-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30161-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30161-6&domain=pdf
http://orcid.org/0000-0002-9684-7016
http://orcid.org/0000-0002-9684-7016
http://orcid.org/0000-0002-9684-7016
http://orcid.org/0000-0002-9684-7016
http://orcid.org/0000-0002-9684-7016
http://orcid.org/0000-0002-3217-2910
http://orcid.org/0000-0002-3217-2910
http://orcid.org/0000-0002-3217-2910
http://orcid.org/0000-0002-3217-2910
http://orcid.org/0000-0002-3217-2910
http://orcid.org/0000-0002-9150-8023
http://orcid.org/0000-0002-9150-8023
http://orcid.org/0000-0002-9150-8023
http://orcid.org/0000-0002-9150-8023
http://orcid.org/0000-0002-9150-8023
mailto:yangzs@ucas.ac.cn
mailto:cfang@iphy.ac.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The study of non-Hermitian Hamiltonians, which can be
regarded as the effective description of dissipative pro-
cesses, can be traced back to the investigation of alpha

decay, where real and imaginary parts of the complex energy are
related to the experimentally observed energy level and decay
rate1. When a lattice system is coupled with environments and
has dissipations, e.g. photonic crystals having radiational loss2–4

and electronic systems having finite quasiparticle lifetime5,6, the
non-Hermitian band theory becomes a conceptually simple and
efficient approach7–12.

Skin effect13–23, a phenomenon unique to the non-Hermitian
band theory, refers to the localization of eigenstates at the
boundary, the number of which scales with the volume of the
system. For example, in one dimension, all eigenstates of a non-
Hermitian Hamiltonian can be localized at the ends of a
chain13. This suggests the failure of Bloch’s theorem24,25, which
states that eigenstates in the bulk are modulated plane waves. As
Bloch’s theorem plays a fundamental role in the development of
condensed-matter physics26, the emergence of skin effect indi-
cates a new and possibly revolutionary direction. Especially,
the skin effect has been observed experimentally in one-
dimensional classical systems27–29, inspiring further studies on
their higher dimensional generalizations14,30–37. However, a
general theory for the higher-dimensional skin effect has not
been established.

Apart from the skin effect, another focus topic in non-
Hermitian band systems is the exceptional point (or line)38–47

that refers to stable point-type (or line-type) non-Hermitian band
degeneracy in the Brillouin zone. At the exceptional point, not
only eigenvalues but also eigenstates of the Bloch Hamiltonian
coalesce39. Many a novel phenomenon related to exceptional
points has been predicted and observed47–52, such as the emer-
gence of bulk-Fermi arc terminated at the exceptional points5,45.
Since the bulk-boundary correspondence plays a central role in
the development of topological phases53, it is natural to ask if
there exists a non-Hermitian bulk-boundary correspondence in
bands having exceptional points, analogous to the surface Fermi
arc in the Weyl semimetals in the Hermitian counterpart54.

In this paper, we establish a theorem that reveals a universal
bulk-boundary correspondence in two and higher dimensional
non-Hermitian bands, as shown in Fig. 1. The “bulk” refers to the
area of the spectrum of the Hamiltonian on the complex plane
with periodic boundary condition, and “boundary” means the
presence (absence) of the skin effect for open-boundary system of
a generic shape. The theorem states that the skin effect appears if
and only if the spectral area is nonzero. This skin effect is “uni-
versal” for three reasons: (i) a randomly generated local non-
Hermitian Hamiltonian has the skin effect with probability one;
(ii) the skin effect is, unlike in one dimension, compatible with all
point-group symmetries and time-reversal symmetry, including
complex-conjugate-type and transpose-type time-reversal sym-
metry in ref. 11; and (iii) it does not require any special geometry
of the open-boundary system. We classify the universal skin effect
into non-reciprocal skin effect and generalized reciprocal skin
effect according to nonzero and zero current functional, respec-
tively, and also propose the corner-skin effect and geometry-
dependent-skin effect as representative phenomena of these two
categories.

A surprising corollary of our theorem is that the stable
exceptional points8,41,43 imply the presence of skin effect. Because
exceptional points have been either observed or proposed in
meta-materials as well as in condensed matter, this corollary
makes skin effect observable in known systems. We predict the
geometry-dependent skin effect in the two-dimensional photonic
crystal studied in ref. 45, and propose to observe this effect in the
anomalous dynamics of wave packets.

Results
Theorem: an equivalence between spectral area and skin effect.
For generic one-dimensional non-Hermitian systems, the
correspondence between the spectral shape and the skin effect has
been derived17,18, i.e., when the Bloch spectrum is a loop-type
(an arc-type), the skin effect appears (disappears).

Generalizing the correspondence to two dimensions, we note
two main differences. One difference is in the periodic-boundary
spectrum, Ei(k), where i is the band index and k the crystal
momentum in the first Brillouin zone (BZ). Generally speaking,
Ei(k) is a mapping from the d-dimensional torus to the complex
plane, C. When d= 1, the image of Ei(k) forms a loop; but when
d > 1, the image is generically a continuum on C, denoted by
Ei(BZ). The area covered by Ei(BZ) on the complex plane is called
the spectral area, denoted by Ai. Another difference is in the
variety of open-boundary condition. There is only one geometry
for an open system in one dimension, i.e., an open chain; but
there are an infinite number of geometries in two dimensions
such as triangle, rectangle and pentagon.

Now we are ready to state the theorem of universal skin
effect: in the thermodynamic limit, the skin effect is present in a
Hamiltonian having open boundary of generic geometry, if the
spectral area is nonzero (Ai ≠ 0); vice versa, the skin effect is
absent for all possible geometries, if the spectral area is zero
(Ai= 0). The open boundary in the theorem refers to the fully
open boundary condition in all spatial directions. As the
periodic-boundary Hamiltonian describes the dynamics in the
bulk, the theorem relates a bulk property (spectral area) to a
boundary one (existence of skin modes). Fig. 1 shows some
schematic examples. The complete proof of the theorem is
provided in the Supplementary Note 1.

A brief outline of the proof is illustrated in Fig. 2. The theorem
is obtained in three steps: step I establishes the equivalence
relation between spectral area and spectral winding number of
straight lines in the BZ; step II connects these nonzero spectral
winding numbers with skin effect on the stripe geometry — the
geometry with open boundary in only one direction and periodic
boundary in other directions; step III illustrates that skin effect on
stripe geometry implies skin effect on fully open-boundary
geometry (i.e., the universal skin effect), which relies on a
conjecture. The justification of this conjecture is discussed in the
Supplementary Note 1.

The above theorem has implied the universality of skin effect in
two and higher dimensions. As Ei(BZ) is the image of the d ≥ 2-
dimensional torus on the complex plane, it takes fine tuning of
parameters to make Ai= 0 for every i. In fact, for single-
band Hamiltonian, we can prove that A= 0 if and only if
HðkÞ ¼ P½hðkÞ�, where h(k) is a Hermitian Hamiltonian and P is a
complex polynomial (see Supplementary Note 1). In other words, a
randomly generated non-Hermitian Hamiltonian HðkÞ has skin
effect: the first meaning of universality. In previous studies, other
types of skin effect, such as the line-skin and the high-order-skin
effect, in two and higher dimensions have been proposed30,34.
These types all require the open-boundary system take a special
geometry (usually a rectangle) and are hence considered special
and non-generic. Additionally, the number of skin modes in the
universal skin effect follows a volume law, which differentiates from
the higher-order-skin effect. The skin effect when Ai ≠ 0 assumes a
completely generic geometry of boundary: the second meaning of
universality. The third meaning of universality lies in the fact that
the higher-dimensional skin effect is compatible with all point-
group symmetries, i.e., the universal skin effect can appear if and
only if the spectral area is nonzero, regardless of the point-group
symmetry of the bulk Hamiltonian. While in one dimension, if the
bulk Hamiltonian only respects, for example, the inversion
symmetry, the periodic-boundary energy spectrum has an
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arc-form on the complex plane, which means the absence of
non-Hermitian skin effect11,23. A standing wave explanation for
the theorem is provided in the Supplementary Note 2.

The corner-skin and the geometry-dependent-skin effect. While
the theorem shows that the skin effect is universal, it does not
specify what skin modes look like in higher dimensions. Here, we
define the current functional, which partitions the universal skin
effect into non-reciprocal skin effect and generalized reciprocal
skin effect. Then we report the representative phenomena in these
two types, i.e., the corner-skin effect (CSE) and the geometry-
dependent skin effect (GDSE), respectively.

The current functional is defined as

Jα½n� ¼ ∑
i

I
BZ
dkd nðEi; E

�
i Þ∇αEiðkÞ ð1Þ

under the periodic-boundary condition, where i is the energy
band index and ∇α indicates the directional derivative along
certain direction α in d-dimensional momentum space. Here,
n(E, E*) represents a distribution function when the system
reaches to a steady state and only depends explicitly on the energy
of the system state17. The nonzero current functional (labeled by
J ≠ 0) is defined as: ∃ α, n, Jα[n] ≠ 0; and as a complementary set,
the zero current functional (labeled by J= 0) is defined as: ∀ α,

n, Jα[n]= 0. By definition, the nonzero current functional and
zero current functional are complete and mutually exclusive
mathematically. Therefore, we can classify the universal skin
effect (nonzero spectral area) into two types according to the
current functional, i.e., the non-reciprocal skin effect (J ≠ 0) and
generalized reciprocal skin effect (J= 0), as illustrated in Fig. 3.
Note that this classification of skin effect according to the current
functional is different from the classification of intrinsic point-
gap topology for symmetry class11,18 (see Supplementary Note 3).
The current functional is shown to vanish in two and three
dimensions under point groups Ci, D2,3,4,6, C2h,3h,4h,6h,
D2d,3d,2h,3h,4h,6h, T, Td,h, O and Oh. Therefore, the non-reciprocal
skin effect is only compatible with point groups Cm and
C2,3,4,6,2v,3v,4v,6v. As a comparison, the generalized reciprocal skin
effect is compatible with all point-group symmetries (see also
Supplementary Note 3).

We define the CSE as a type of the non-reciprocal skin effect
(J ≠ 0) that exhibits the particular phenomenon that almost all
eigenstates are localized at corners of the open-boundary
geometry. The Hamiltonian of the example for CSE is

HðkÞ ¼ ½5ðcos kx þ cos 2kxÞ � iðsin kx þ 3 sin 2kxÞ
þ 5 cos ky þ i sin ky�=2;

ð2Þ

of which the spectral area under square geometry and triangle
geometry is shown in Fig. 3(a, b) with light blue color. Because
of the nonzero spectral area, the theorem tells us that the
Hamiltonian must have the universal skin effect. This is verified
in Fig. 3(c, d), where the spatial distributions of all eigenstates
WðxÞ ¼ 1

N ∑n ψnðxÞ
�� ��2 under different open boundaries are

plotted. Here ψn(x) is a normalized right eigenstate and N is
the number of these eigenstates. It is found that the
wave functions are always localized at the corner of the
boundary in Fig. 3(c), even if the open-boundary geometry is
changed in Fig. 3(d). We elaborate on the localization of
eigenstates for this example in the Supplementary Note 4. We
also plot the corresponding eigenvalue spectra under different
open boundaries, as shown in Fig. 3(a, b) with red color. One
can notice that the spectral areas under periodic and open
boundaries do not equal. The CSE is a representative one of
non-reciprocal skin effect and inherits its features, including
nonzero current functional and incompatibility with certain
point-group symmetries.

Universal Skin Effectff Skin Effect on Stripeff
Geometry

NonNonzerzero So Specpectratrall 
Winding of Straight WW

Lines in the BZ

Step I

Step II

Step III

Conjecture

Theorem

Nonzero Spectral Area

Fig. 2 The sketch of the proof of the theorem. The first step connects the
nonzero spectral area and nonzero spectral winding number along some
direction in the BZ. The latter means the Hamiltonian exhibits the skin
effect under the corresponding stripe geometry, which is proved in the
second step. The skin effect on stripe geometry further reveals the
universal skin effect, relying on a conjecture in the third step.

Fig. 1 The theorem of universal skin effect. a represents the Brillouin zone. b, d shows that if the spectral area of HðkÞ is nonzero, the skin effect will
appear on some generic open-boundary geometries. c, e shows that when the spectral area of HðkÞ is zero, or forming one or several arcs on the complex
plane, there is no skin effect under any geometry.
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Similar to the definition of CSE, the GDSE is one type of
generalized reciprocal skin effect (J= 0) showing the unique
phenomenon that there is at least one fully open boundary
geometry under which the skin effect does not appear.
The Hamiltonian of the example for GDSE reads

HðkÞ ¼ 2 cos kx þ i cos ky: ð3Þ

Since the spectral area is nonzero, our theorem tells us that the
system must have skin effect for certain open-boundary
geometry, such as a random polygon. However, an interesting
phenomenon in this example is that the skin effect disappears
under the square geometry due to the existence of two mirror
symmetries shown in Fig. 3(g). Once we choose other types of
boundaries where mirror symmetries are broken, the skin effect
reappears as shown in Fig. 3(h). Since the appearance of the skin
effect and the localization position depend on the geometry, it is
called the GDSE. In one dimension, an open chain does not
exhibit skin effect when its spectrum coincides with the
corresponding periodic-boundary spectrum on the complex
plane. Unlike in one dimension, even if the region covered by
the energy spectrum under some open-boundary geometry (such
as the triangle geometry in Fig. 3(h)) seems to be the same as the
region covered by the periodic-boundary spectrum, the system
can still show a skin effect due to the different density of states on
the complex plane. It is also a unique feature in two- and higher-
dimensional skin effects. In the Supplementary Note 4, we

provide some numerical results to illuminate this new type of skin
effect and discuss the localization of eigenstates on the open-
boundary geometry. In addition, we show that GDSE follows the
volume law, i.e., the increase in the number of skin modes is
proportional to the increase in the system volume. For GDSE,
there is at least one spatial geometry such that skin modes vanish,
and as such is mutually exclusive with CSE. Additionally, GDSE is
compatible with all point groups, in contrast to CSE.

Corollary: skin effect from exceptional points. An immediate
corollary of our theorem is that all lattice Hamiltonians with
stable exceptional points have universal skin effect, connecting
two unique phenomena in the non-Hermitian band theory. This
connection has also been discussed in ref. 31, where the bands
around the stable exceptional point form a point gap with non-
zero spectral winding number, consequently, exhibiting the skin
effect under an open-boundary geometry. Consider a stable
exceptional point k0 in two dimensions. Due to the branch point
structure of exceptional point, the dispersion around k0 can be
expressed as8E ± ðkÞ ¼ ± c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx þ c1qy

p þ Oðjk � k0jÞ, where
qi=x,y denotes a small derivation from exceptional point in x or y
direction, that is, qi= ki− k0i. Here c0, c1 are nonzero complex
numbers and the stable exceptional point ensures the nonzero
imaginary part of c1. Suppose the range of the expansion is r0,
then it is clear that A± ≥ jc0jπr02=2≠ 0. By the theorem, the

Fig. 3 The corner-skin effect and the geometry-dependent-skin effect. The universal skin effect can be further classified into two types by the current
functional, that is, non-reciprocal skin effect ( ∃ α, n, Jα[n]≠ 0) and generalized reciprocal skin effect ( ∀ α, n, Jα[n]= 0). CSE (a)–(d) and GDSE (e)-(h)
are representatives of these two types of skin effects, respectively. In (a, b, e, f), the light blue regions represent the spectrum under periodic boundary,
where 200*200 k-grid is used, and the red points represent the eigenvalues under different open-boundary geometries. The system size under square
geometry in (c, g) is Lx × Ly= 60 × 60, and each triangle geometry in (d, h) has the same right-angled side length Lx= Ly= 60. The spatial distributions of
eigenstates W(x) are plotted in (c, d, g, h) with the color bars. In the system with GDSE, the skin effect disappears under square geometry (geometry 1) in
(g), and reappears under triangle geometry (geometry 2) in (h).
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system must have universal skin effect (see Supplementary
Note 5).

Now we use the photonic crystal model that has been
experimentally realized in ref. 45 to demonstrate our corollary.
The tight-binding model Hamiltonian with periodic boundary
can be written as

HðkÞ ¼ dðkÞ � σ � iγ=2ðσ0 � σzÞ; ð4Þ
where σ= (σ0, σx, σy, σz) is a vector of the Pauli matrices and d(k) is
a vector with four components, that is, dðkÞ ¼ fμ0 � ðt2 þ t3Þ
ðcos kx þ cos kyÞ; t1½1� cos kx � cos ky þ cosðkx � kyÞ�; t1½sin kx�
sin ky � sinðkx � kyÞ�; μz þ ðt2 � t3Þðcos kx � cos kyÞg. The para-
meters are chosen as follows, (t1, t2, t3, μ0, μz)= (0.4,− 0.1, 0.5,
1.35,− 0.02). As shown in Fig. 4(a), in the Hermitian limit, i.e.
γ= 0, the system has two Dirac points along the x-axis. When
external dissipation or radiational loss is added, i.e., γ ≠ 0, each
Dirac point splits into two exceptional points shown in Fig. 4(b),
connected by the bulk Fermi arc. According to our theorem,
the system must have the universal skin effect, more precisely, the
GDSE. Specifically, the skin effect disappears under square
geometry but reappears under diamond geometry, which is verified
in the Supplementary Note 6.

So far, we have shown the features of the energy spectrum and
wave function in the system with GDSE. We expect some
observable phenomena from the skin effect, which motivates us
to examine the dynamical properties for the photonic crystal model
in Eq.(4). In order to show this, we simulate the time evolution of
the wave packet starting at the center of the diamond geometry

with an initial velocity perpendicular to one edge. Here the initial
state is chosen to be Gaussian form ψ0

�� � ¼ N exp½� x � x0
� �2

=

10� y � y0
� �2

=10� i2x � i2y� 1; 1ð ÞT , where N is the normal-
ization factor and x0= y0= 21 is the center coordinate of the
diamond geometry. We plot the corresponding spatial distribution

of normalized final states ψðtf Þ
���

E
¼ N ðtf Þe�iHOBCtf ψ0

�� �
for every

ten time intervals, where HOBC represents the open-boundary
Hamiltonian on the diamond geometry. As shown in Fig. 4(c), in
the Hermitian case, the center of the wave packets obeys the simple
law of reflection: the center of the wave packet just bounces
between the two edges while slowly dispersing with time. However,
in the non-Hermitian case (γ= 1/4) with GDSE, after several
oscillations between two edges, the wave packet makes a side jump
into the upper left corner as shown in Fig. 4(d). The transverse
motion of the wave packet induced by skin effect is explained in
more detail in the Supplementary Note 6. This anomalous
dynamical behavior is an experimental signature of GDSE.

We also propose the realization for CSE in a three-dimensional
system with exceptional lines. Consider a Weyl semimetal with
non-Hermitian term as a perturbation, of which the periodic-
boundary Hamiltonian reads

HðkÞ ¼ ½drðkÞ þ iδ diðkÞ� � σ; ð5Þ
where dr(k) and di(k) are vectors with four components, that is,
drðkÞ ¼ ð0; sin kx; sin ky; 2� cos kx � cos ky þ sin kzÞ and diðkÞ ¼
ð� ffiffiffi

5
p

; 1þ cos kz; 1� cos kz; cos kzÞ. The Hermitian part dr ⋅ σ is
a Weyl semimetal possessing two Weyl points, the red cone at

Fig. 4 The photonic crystal model with exceptional points and Weyl semimetal with exceptional lines. Two Dirac points (a) of a two-dimensional
photonic crystal model are split into four exceptional points (b) upon adding non-Hermitian term, such as radiational loss. Correspondingly, the evolution of
Gaussian wave packet with initial velocity at the center of a diamond geometry for each ten time intervals is shown in (c) with γ= 0 (Hermitian) and
(d) with γ= 1/4 (GDSE). Two Weyl points (e) of a three-dimensional Weyl semimetal are expanded into two exceptional rings (f) after the addition of
non-Hermitian perturbations. The spatial distribution of eigenstates, i.e. W(x), is plotted in (g). The modulus square of the propagator from i to oPio(ω) and
that from o to iPoi(ω), as functions of ω, are plotted with red color and dark cyan color in (h), respectively.
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(0, 0, 0) and blue cone at (0, 0, π) shown in Fig. 4(e). Upon
turning on the non-Hermitian term, the Weyl points evolve into
two exceptional rings in Fig. 4(f). Consequently, the system
exhibits the CSE with δ= 1/6 shown in Fig. 4(g), as a numerical
verification of our corollary.

Experimentally, the non-reciprocity of the CSE can be detected
by the two-point Green’s function. The modulus square of the
propagator from i= (1, 1, 1) to o= (16, 16, 16) is expressed as
PoiðωÞ ¼ ∑α;βjho; βj 1

ω�Ĥ
ji; αij2, where α, β label the orbitals of the

unit cell. We calculate Poi(ω) and Pio(ω) in Fig. 4(h), where-
a significant difference between them demonstrates the
non-reciprocity of CSE.

Discussion
Our work has built a bridge between two distinct phenomena that
only exist in non-Hermitian systems, i.e., the exceptional points
(lines) and the non-Hermitian skin effect, by establishing the
correspondence between bulk (spectral area) and boundary
(universal skin effect). We prove that the skin effect is universal
and compatible with all point-group symmetries and time-
reversal symmetry in two and higher dimensions. Due to the
universality, it is expected that the skin effect is observable in a
wide range of platforms, such as photonic crystals with natural
radiational loss, acoustic meta-materials and circuit networks
with lossy components such as resistors. Beyond these classical
systems, the skin effect can also be realized in condensed matter,
e.g., the heavy-fermion material with finite quasiparticle lifetime
and the Weyl-exceptional-ring semimetal. The latter is realizable
in Weyl semimetals made from inverting bands that have
disparate effective masses, such as d- and f-bands.

One should be reminded, however, that the results in this paper
assume the coherent dynamics of the constituent degrees of
freedom, which is unlikely the case in macroscopic condensed-
matter systems where the coherence length is shorter than the
system size. On the contrary, for the systems where the system
size and the coherent length are comparable, as in mesoscopic
systems, we believe that the universal skin effect has a significant
contribution to the transport properties, a subject for future
exploration.

Data availability
Raw numerical data from the plots presented are available from the authors upon
request.

Code availability
The code used to generate the figures are available from the authors upon reasonable
request.
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