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ABSTRACT
This paper describes a new method of frequency measurement based on lock-in amplifiers (LIAs). In contrast to other frequency measurement
methods, such as fast Fourier transformation (FFT), zero crossing, and scanning autocorrelation, this method is based on an adaptable LIA
design for high-precision determination of not only the frequency but also the amplitude and phase of periodic signals, even when they
are buried in heavy noise with low signal-to-noise ratios. Mathematical derivation of the local spectrum around the center frequency is
performed, and the local frequency spectrum waveform of the sinusoidal signal, regardless of whether it is pure or noisy, is found to be exactly
of a bell shape that can be described by a three-parameter sine function. Based on the principle of LIAs, the correct frequency can produce
a peak amplitude in the local spectrum. As a result, the amplitudes of three frequency points around the target frequency can be used to
precisely determine the peak frequency via sinusoidal fitting. The efficiency of the proposed method is log2(N) times that of FFT. Simulation
results show that the new algorithm can reach the theoretical Cramer–Rao lower bound and remain below a lock-in upper bound. The new
frequency measurement method has been implemented in an field-programmable gate array (FPGA)-based device and systematically tested
for its dependence on the frequency, amplitude, and signal-to-noise ratio with typical noise types. Theoretical and experimental results show
that the new method can be used in fine determination of the frequency if the user has prior knowledge of the approximate location of the
frequency.
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I. INTRODUCTION

Precision frequency measurements, especially for signals
obscured by noise, are of great importance in many areas of sci-
entific research and industrial applications (sound analysis, global
positioning system positioning, Internet of things, and experimen-
tal physics, for example). Conventionally, three main techniques are
used to measure frequency:1,2 zero crossing, Fourier transform, and
phase unwrapping. Frequency determination in terms of the number
of zero crossings in one second is usually suitable for high signal-
to-noise ratio (SNR) scenarios. The basic Fourier transform suffers
from a finite resolution, but the discrete time Fourier transform can
improve the precision at the expense of computational complexity.3

Because phase noise obeys a white Gaussian distribution, the phase
can be unwrapped and regressed to recover the frequency from a
signal with a relatively low SNR.4

Local frequency spectrum fitting with various functions
has been used to precisely determine the frequency with low

computation costs,5–10 with linear interpolation5 and parabola fit-
ting6,7 being the most convenient for applications. Quinn8 proposed
a complex interpolation method using three successive Fourier coef-
ficients with a low mean square error of the frequency estimation.
Grandke9 performed optimization tests on the pretreatment of dif-
ferent windows. Aboutanios and Mulgrew10 developed iterative esti-
mators that could converge to the true signal frequency. Boashash11

and Jacobsen12 reviewed and compared various frequency estima-
tion techniques. The Cramer–Rao lower bound (CRLB) is widely
used as a performance benchmark for comparing the accuracy
and statistical efficiency of different estimators.2,13,14 For estima-
tion under various constraints, a non-Bayesian parameter estima-
tion approach called the constrained CRLB method has also been
derived.15

Some recent developments show that this topic continues to
attract considerable interest.16–20 Belega and Petri16 compared two-
and three-point interpolated algorithms for both complex values
and modules. A novel phase estimator based on the corrected-phase
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discrete Fourier transform was proposed to greatly reduce spectral
leakage with a two-point joint estimation model.17 Pulse interfer-
ences can be eliminated by an iterative algorithm.18 Serbes19 dis-
cussed precision frequency estimation when the phase information
is already known. Remarkably, Bey proposed a highly accurate fre-
quency estimation procedure based on multiresolution Fourier anal-
ysis and obtained vanishing variances far below the CRLB when the
SNR is above the threshold value.20

Lock-in amplifier (LIA) measurements, previously known as
phase-locking detection, involve recovering the amplitude or phase
variations of an AC signal with a fixed period or frequency. This has
become the most widely used method based on dynamic measure-
ments in scientific research because of its powerful ability to detect
signals buried in relatively high levels of noise or interference.21

Traditional LIAs require prior knowledge of a signal’s frequency
and involve demodulators that are “locked” to the signal of interest
by virtue of a synchronous or coherent reference signal. However,
reference signals for LIAs are not always available with high con-
fidence, such as in the case of misalignment due to distortion or
imperfections during transmission or detection cycles. To address
this problem, we propose to measure the frequency independently
and with high accuracy to ensure the precision of the subsequent
LIA measurements of the amplitude and phase of the periodic sig-
nal. Therefore, this measurement to be made independently from
the LIA measurements is called the lock-in frequency (LIF) meter
measurement.

Because LIAs function as ultranarrow bandpass filters, the LIF
method is implemented after coarse estimation has been made
by other methods. However, the LIF method is advantageous
for accurate fine frequency determination, even in low SNR sce-
narios. In Sec. II, the LIF algorithm is first derived mathemat-
ically. The performance is then evaluated via simulation, after

which the implementation results of the LIF instruments are
given.

II. THEORY AND SIMULATION
In contrast to the fixed frequency strategy in conventional LIAs,

the principle of the LIF method is to take a frequency ω as a vari-
able and vary the virtual reference signal within a certain range. The
frequency is then obtained from the maximum lock-in amplitude.
Unfortunately, the precision of the frequency measurements based
on the scanning LIF approach depends heavily on the scanning den-
sity, and a high scanning density naturally leads to a low efficiency.
To solve this contradiction and simultaneously obtain high precision
and efficiency, we analyze the results of the scanning LIF approach
and find that the resulting LIF function (Δω) can be approximately
considered to be a cosine function in a narrow frequency range
Δω around the center frequency ω0, as shown in Eq. (1), where
the approximation in each step is based on Δω/ω0 ∼ 0. This func-
tional LIF equation was tested, the raw LIF data near the center
frequency could be fitted with a sinusoidal function, and the simula-
tion results are shown in Fig. 1, where |Δω/ω0| is chosen below 0.7%
so that the raw data cover a single functional range. The quantitative
dependence of the range on the SNR and measurement condition
is given in Sec. A4 of supplementary material and Sec. III. Such an
adaptable LIF approach can thus be used to realize high precision
frequency measurements with high efficiency under low SNR condi-
tions. After the frequency is determined with high precision, normal
LIA detection is then used to estimate the phase and amplitude at
this frequency. When the amplitude of the sinusoidal signal Vp is
determined, the corresponding SNR can be calculated using SNR =
Vp

2/(2Vrms
2 − Vp

2), where Vrms is the root mean square voltage of
the mixed test signal,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LIF(Δω)RE =
2
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∫

T0=
2π
ω0

0
cos(ω0t) sin[(ω0 + Δω)t]dt =

2ω0(ω0 + Δω) sin ( πΔωω0
)

2
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LIF(Δω)IM =
2

T0
∫

T0=
2π
ω0

0
sin(ω0t) sin[(ω0 + Δω)t]dt =

2ω0
2 sin( πΔωω0

) cos( πΔωω0
)

Δωπ(2ω0 + Δω) ,

∣LIF(Δω)∣ =
√

LIF(Δω)RE
2 + LIF(Δω)IM

2,

when Δω≪ ω0, ∣LIF(Δω)∣ ≅ ∣
2ω0

2 sin( πΔω
ω0
) cos( πΔω

ω0
)

Δωπ(2ω0+Δω) ∣ ≈
2ω0 cos( πΔω

ω0
)

(2ω0+Δω) ≃ cos( πΔωω0
).

(1)

To measure the frequency independently with high precision,
the local frequency spectrum can be fitted to determine the peak
frequency, according to the algorithm in the IEEE standard four-
parameter sinusoidal fitting method.22 After further investigation
by simulation tests, the three-parameter sinusoidal function f(x)
= A∗ sin(B∗x) + C was found to be sufficient to determine the local
peak for the target frequency, where x indicates the variant in the
local frequency range to be solved with the unit of Hz. As shown in
Fig. 2, for a signal with a data length of N = 100 k and a sampling rate
of 1000 sps as the detection parameters, the simulated uncertainty

for the raw lock-in data at three frequency points is comparable
to that at three hundred frequency points, both close to the CRLB
for a wide range of SNRs. Notably, during the fitting process, the A
parameter should be set above zero and the B parameter should be
properly initialized as 2 ∗ N ∗ T to find the target frequency, where
N and T represent the data length and time interval, respectively.
After the sinusoidal fitting is completed, the measured frequency can
be obtained from the optimized parameter Bopt via ωmeas/2π = xopt
= (Nopt + 0.25)/Bopt, where Nopt is the nearest integer value around
x∗Bopt/2π.
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FIG. 1. Principle of the LIF approach.

When analyzing the computational complexity of the LIF
method, which is important for applications with large N values, the
computational complexity of the fast Fourier transformation (FFT)
measured by the number of floating-point operations per second
(FLOPS) is proportional to 6N ∗ log2(N) when N is a power of two
and proportional to 6N2 + 2N(N − 1) when N is a prime number,
as indicated in Ref. 2. The three-point sinusoidal fitting process is
N-independent and consumes negligible computer resources, so the
computational complexity depends on calculating the amplitudes of
three frequency points. The amplitude calculation at each frequency
point comes from the root mean square calculation result of the real
and imaginary parts. Both the real and imaginary parts for each fre-
quency require N FLOPS, so the entire process costs 6N FLOPS in
total, which is 1/log2(N) times the cost of the FFT.

When the sampling rate is fixed to 1000 sps (corresponding to
T = 0.001 s) and the data length is changed from 1000M to 10M,

FIG. 2. Dependence of the simulated uncertainty on the number of raw lock-in fre-
quency points. (a) Three-point raw fitting; (b) 300-point raw fitting; (c) comparison
of the two fitting processes with the theoretical Cramer–Rao lower bound.

FIG. 3. Comparison of the simulated LIF precision with the theoretical Cramer–Rao
lower bound and lock-in upper bound.

as illustrated in Fig. 3, the simulation results indicate that the pro-
posed LIF algorithm is efficient in approaching the CRLB.13 In addi-
tion, the LIF performance is also confined by a lock-in upper bound
(LIUB) of the measurement deviation due to the frequency uncer-
tainty caused by white noise. As the dotted lines separate the simula-
tion results in Fig. 3, for each simulation result above the LIUB, there
is “saturation” of the measurement deviation below the CRLB, indi-
cating an incorrect working mode of the LIA. The CRLB and LIUB
formulas are shown in Eq. (2), where Rp, T, and N denote the SNR
in power, time interval, and data length, respectively. In contrast to
the CRLB, the LIUB is N-independent and increases rapidly with the
increasing SNR, which corresponds to the theoretical resolution of
the digital LIA in the frequency range. When the SNR decreases out-
side the resolution range, the LIF method cannot work in a wider
frequency deviation range because the single-bell shape in the local
frequency spectrum would be broken by heavy noise,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

var(ω/2π)LB ≈
6

(2π)2RpT2N3
,

var(ω/2π)UB ≈
R2
p

T2 .
(2)

III. IMPLEMENTATION
The proposed LIF algorithm was implemented in a newly

designed lock-in device consisting of a front-end amplifier, an ADC
acquisition module (18 bits with a 10M sps sampling rate for each
channel), an FPGA processing unit, and a liquid-crystal displayer.
Figures 4(a) and 4(b) show the implementation structure and the
circuit-board appearance of the LIF instrument.

To evaluate the performance of the LIF device, a testing plat-
form was set up, as shown in Fig. 4(c). The LIF testing system
includes a signal generator Rigol DG4162, a random noise gen-
erator NF WG-721A, an oscilloscope Tektronix DPO4104, and a
standard frequency meter Agilent 53132A. DG4162 generates a pure
sine wave or mixes uniform white noise for some SNR settings. To
produce additional random Gaussian white noise or pink noise, the
output of DG4162 was connected to the input of WG-721A, which
can generate random noise in a finely tunable manner and output
signals and noise for testing with various SNR settings. The accu-
racy and precision of the mixed signals are then tested by the LIF
instrument and 53132A, as shown in Fig. 4. DPO4104 is used when
checking or recording waveforms for further analysis.
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FIG. 4. (a) Implementation structure and (b) circuit-board of
the LIF device. (c) Testing platform with a signal generator,
a noise generator, and a standard frequency meter as well
as the LIF instrument, where an oscilloscope is used for
recording raw waveforms when necessary.

To be systematic in the investigation, the LIF instrument was
tested for its dependence on the SNR, frequency, amplitude, noise
types, and time. The time constant of the LIF method was fixed at
1 s in this work, and equivalently, the gate time of the 53132A fre-
quency meter was also fixed at 1 s. Except for the time-dependent
tests, the number of tests was taken as 100 for all combined factors
of the SNR, frequency, amplitude, and noise types to be statisti-
cally meaningful. Both 53132A and the LIF instrument produce fre-
quency measurement results ωmeas/2π, which then generate a mean
frequency ωmean/2π and a standard deviation ωdev/2π, with a unit of
Hz. In addition, the LIF instrument can output the amplitude of the
measured frequency and the corresponding phase difference. For a
single channel signal, the phase difference cannot be used, so it is
omitted when discussing the results of the current work. Using the
same statistical analysis, amplitude measurements generate a mean
amplitude Vp-mean and a standard deviation Vp-dev.

IV. DISCUSSION
The SNR-dependent frequency measurement is shown in Fig. 5.

It is found that the accuracy of the 53132A frequency meter grad-
ually decreases when the SNRs of the Gaussian white noise mixed
signals decrease below 10 dBp (10 dB in power), while the LIF instru-
ment can correctly work even when the SNRs are as low as −40 dBp,

FIG. 5. Frequency measurement results for real Gaussian white noise mixed sig-
nals of different SNRs compared to results from the Agilent 53132A frequency
meter.

with ωdev/ωmean < 1 × 10−5 relative deviations, which are compara-
ble to the theoretical CRLB simulation results shown in Fig. 3 (the
N = 10M CRLB line reads a 1.2 × 10−6 relative deviation at an SNR
of −40 dBp).

Figure 6 shows the frequency-dependent result of the LIF
instrument. To compare the accuracy and precision of the instru-
ment with those of a standard frequency meter, pure sine waves
with an amplitude of 0.2 V were generated by DG4162, which has
a resolution of 1 μHz. The relative deviation of the LIF instrument
approaches 1 × 10−9 around 10 kHz, corresponding to an absolute
precision of 10 μHz at 10 kHz. At lower frequencies, the uncertainty
is higher because for a finite time constant (TC = 1 s in this work),
the periods for measurement are limited, while at higher frequen-
cies, the higher uncertainty is due to the finite sampling rate of the
LIF instrument.

Aside from the high precision frequency measurements, the LIF
instrument can measure the amplitude of signals at the determined
frequency point with reasonable precision. As shown in Fig. S7
and Table I in the supplementary material, at lower SNRs down
to −40 dBp, the LIF instrument correctly measured the frequency
and amplitude at the same time with high precision, and the noise
type dependence of accuracy was not found. Three kinds of noise
were investigated in this work: Gaussian white noise, Gaussian pink
noise, and uniform white noise. It is worth mentioning that the

FIG. 6. Frequency-dependent LIF measurement results.
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FIG. 7. Amplitude-dependent LIF measurement results for signals with Gaussian
white noise, Gaussian pink noise, and uniform white noise at a fixed SNR of 0 dBp.

noise type influences the precision of the amplitude measurement.
Figure 7 shows that uniform white noise has the least deviation,
which is obviously because uniform white noise has a lower fixed
peak value. Gaussian random white noise and pink noise have slight
differences even when the noise power and SNR are equal, which is
understandable because the Gaussian distribution of white noise is
broader than that of pink noise for a fixed noise power. As a result,
Gaussian white noise has a higher peak value and thus causes larger
deviations.

It is useful to test the time-dependent behavior of real applica-
tions. Taking 10 kHz as an example, repeated measurements have
been recorded, as shown in Fig. 8(a), where the statistically relative
accuracy and precision are approximately 5 × 10−9 and 7 × 10−11,
respectively. The precision is much higher than that shown in Fig. 5
simply because the noise generator was turned off and only a pure
sinusoidal wave was tested. To ensure that each measurement was

FIG. 8. (a) Repeated LIF test results for pure sine signals at 10 kHz and (b) a
comparison of response time tests to the results of a standard frequency meter.

independent in the set time constant of 1 s, the set frequencies
were flipped upward and downward several times, and the result in
Fig. 8(b) shows no obvious delay outside of the set time constant, in
high consistence with the standard frequency meter.

Therefore, the LIF method can measure both frequency and
amplitude with high precision and efficiency. Nevertheless, this does
not mean that the LIF method will completely replace normal FFT-
like methods because the LIF method struggles to measure frequen-
cies over a wide frequency range and prior knowledge of the local
frequency is necessary. As a result, the LIF method is best suited for
the determination of finite frequencies that drift slowly over a small
frequency range.

V. CONCLUSION
In this paper, we have proposed a novel LIF method for fre-

quency measurements based on innovations in both frequency mea-
surements and LIA techniques. The local frequency spectrum of the
sinusoidal function is shown to be better than that of the parabola
function. Furthermore, simulation results demonstrate that the LIF
results have a standard deviation approaching the CRLB with an N-
proportional computational complexity, which is obviously better
than that of the FFT method, which is N ∗ log2(N)-dependent. The
implemented LIF instrument can perform both frequency measure-
ments and amplitude measurements at the same time, even when
the SNRs are significantly low. As a complement to classic frequency
measurement techniques, which can perform wide frequency mea-
surements, the LIF method provides a new possibility for local fine
frequency measurements.

SUPPLEMENTARY MATERIAL

See the supplementary material for the LIF simulation pro-
grams (coded in the Labview platform) and detailed LIF testing
information, including Figs. S1–S8 and Tables S1 and S2.
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A1. Notes for LIF simulation programs 

Programs are uploaded and free for download: https://github.com/iop-lujun/LIF . 
To clarify the principle and process of the new frequency meter based on the digital lock-

in algorithm introduced in the main text, the author has decided to release the related 
simulation programs, which have been developed and maintained in Labview for more than 
ten years (the author released his digital lock-in source codes when publishing the first paper 
about virtual lock-in amplifiers in 2008 when he was a PhD student , see 
https://doi.org/10.1088/0957-0233/19/4/045702). The FPGA source C codes are 
unfortunately held by a collaborator, which the current author has no permission to release, 
but the Labview version is quite sufficient to understand and realize the lock-in frequency 
meter (LIF) proposed by the current author.  

Because the Labview programming environment is user friendly, one could easily handle 
the source codes with some fundamental practice on Labview. After opening the entry file 
“3G-LIA test simulator 2020.vi”, the front panel of the LIF simulation program appears as in 
Fig. S1. Although the hierarchical structure of the package is rather comprehensive, as shown 
in Fig. S2, the necessary code files developed by the current author are not in the 
“SimLIF2020.LLB” package, as shown in Fig. S3, which could be opened by NI Labview LLB 
manager with a version later than 2016. 

The simulation programs have been coded in English and can generate Gaussian white 
noise and mixed signals with set SNRs, perform LIF calculations, and obtain frequency, 

mailto:lujun@iphy.ac.cn
https://github.com/iop-lujun/LIF
https://doi.org/10.1088/0957-0233/19/4/045702


amplitude, phase difference, and SNR values. 
Permission is hereby granted, free of charge, to any person obtaining a copy of this 

software and the associated documentation files (the "Software") to use the Software without 
restriction, including without limitation of the rights to use, copy, modify, merge, publish, 
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the conditions of citing or referring to the current 
article titled “Lock-in frequency measurement with high precision and efficiency”. Feedback 
information to improve the LIF simulation software is welcome and should be submitted to 
the current author using the corresponding email address. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN 
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 

 
Fig. S1. User interface of the LIF simulation Labview program distributed by the current author. 
 

 
Fig. S2. The hierarchical structure of the LIF simulation program. 
 



 

Fig. S3. Content of the distributed LIF simulation package programmed by the current author. 
 

A2. Detailed LIF testing information 

As shown in Fig. 5 in the main text, the LIF testing platform includes a Rigol DG4162 
signal generator, an NF WG-721A random noise generator, an oscilloscope, and an Agilent 
53132A standard frequency meter. The accuracy and precision of the signal generator have 
been evaluated by firstly using the 53132A frequency meter, as shown in Fig. S4. The random 
noises generated from the NF WG-721A are analyzed after recording the waveforms with the 
Tektronics DPO4104 oscilloscope. The results are shown in Fig. S5, where both white and pink 
noise are Gaussian-distributed, and the maximum bandwidth is approximately 50 kHz, as 
specified by NF company. From the performances of the signal generator and the random 
noise generator, the main frequency used in the main text has been chosen at 10 kHz. It 



should be noted that the NF WG-721A cannot produce uniform noise, but the DG4162 does 
produce a signal with mixed uniform noise when properly configured. As a result, three types 
of noise in total have been investigated in this work. 

To support the SNR-dependent measurements used in the main text, the raw waveforms 
with typical SNRs have been recorded by the DPO 4104, as shown in Fig. S6, and calculated 
by the program introduced in section A1. 

In the main text, when discussing the amplitude-dependent LIF method, only the 
precision is comprised of Gaussian white noise, Gaussian pink noise, and uniform noise 
because the accuracy is almost the same for the three types of noise, as shown in Fig. S7. 

 
Fig. S4. Frequency dependence of the accuracy and precision of the pure sine wave generated 
by the Rigol DG4162 and measured by the Agilent 53132A, with an amplitude of 0.2 V. 
 

 
Fig. S5. Two types of random noise generated from the NF WG-721A, where (a) and (d) are 
the waveforms of white noise and pink noise, respectively; (b) and (e) are the histograms of 



(a) and (d), respectively; and (c) and (f) are the frequency spectra of (a) and (d), respectively. 
 

 
Fig. S6. Demonstration of waveforms with different signal-to-noise ratios (SNRs), where the 
amplitude of the disturbed sine signal is Vp=0.2 V, and the noise type is Gaussian white noise. 
 

 
Fig. S7. Demonstration of the accuracy of the LIF method, where the measured objects have 
an SNR= 0 dBP with different types of noise. 

A3. Datasheets of main LIF testing results 

Table S1. Raw data of Fig. 6 in the main text, where LIF denotes lock-in frequency meter, 
AgF denotes the Agilent 53132A frequency meter, all noise types are Gaussian random white 
noise generated by the NF WG-721A, and the unit of ω/2π is Hz. 
 



 
 
 

 
 
 
Table S2. Raw data of Fig. 8 in the main text, where the unit of ω/2π is Hz. 
 

Noise 
types 

Mean of 
ω/2π 

(Measured 
by LIF) 

Deviation 
of ω/2π 

(Measured 
by LIF) 

Set Vp 
(V) 

Mean of 
Vp 

(Measured 
by LIF) 

Deviation 
of Vp 

(Measured 
by LIF) 

Gaussian 
white 
noise 

10000.0013  3.38E-03 2.00E-01 2.00E-01 1.81E-04 
9999.9991  3.07E-03 2.00E-02 1.99E-02 1.41E-05 
9999.9995  3.44E-03 2.00E-03 1.94E-03 1.26E-06 

Gaussian 
pink 
noise 

10000.0008  3.02E-03 2.00E-01 2.00E-01 1.07E-04 
10000.0010  2.66E-03 2.00E-02 1.99E-02 1.24E-05 
10000.0002  3.13E-03 2.00E-03 1.94E-03 1.26E-06 

Uniform 
white 
noise 

9999.9995  6.85E-06 2.00E-01 2.01E-01 4.11E-06 
9999.9995  2.23E-05 2.00E-02 2.00E-02 7.84E-07 
9999.9995  9.46E-05 2.00E-03 1.96E-03 1.20E-07 

 

SNR 
(dBP) 

Mean of 
ω/2π 

(Measured 
by LIF) 

Deviation 
of ω/2π 

(Measured 
by LIF) 

Set Vp 
(V) 

Mean of 
Vp 

(Measured 
by LIF) 

Deviation 
of Vp 

(Measured 
by LIF) 

SNR 
(dBP) 

Mean of 
ω/2π 

(Measured 
by AgF) 

Deviation 
of ω/2π 

(Measured 
by AgF) 

-60 9987.688 2.61E+00 2.00E-04 4.06E-04 5.57E-04 -10 31020.38 278.37  
-50 9991.172 6.68E+00 2.00E-03 1.59E-03 1.58E-03 -7 29855.01 280.63  
-40 10000.05 1.01E+00 2.00E-03 1.65E-03 4.48E-04 -4 28036.54 131.84  
-30 10000.01 1.55E-01 2.00E-02 1.93E-02 8.90E-04 0 22628.28 84.86  
-20 9999.975 3.25E-02 2.00E-02 1.98E-02 1.05E-04 1 21164.4 65.41  
-10 9999.995 1.30E-02 2.00E-01 2.00E-01 3.89E-04 2 19496.11 60.15  
-7 10000 4.84E-03 2.00E-01 2.01E-01 3.83E-04 3 17833.86 76.52  
-4 10000 4.14E-03 2.00E-01 2.00E-01 2.63E-04 4 16109.99 54.94  
0 9999.999 3.70E-03 2.00E-01 2.00E-01 1.18E-04 6 13409.93 35.41  
3 9999.999 2.40E-03 2.00E-01 2.00E-01 1.10E-04 7 12407.26 76.95  
6 10000 2.17E-03 2.00E-01 2.00E-01 8.56E-05 8 11665.13 43.86  

10 9999.998 2.66E-03 2.00E-01 2.00E-01 8.21E-05 9 11072.94 29.77  
15 9999.999 1.50E-03 2.00E-01 2.00E-01 4.09E-05 10 10702.16 31.45  
20 10000 4.59E-04 2.00E-01 2.00E-01 1.31E-05 20 10043.19 10.98  



A4. Accuracy analysis of the LIF method 

The accuracy of the LIF method is obviously dependent on the proximity of the initial 
frequency. To what extent does the proximity influence the accuracy? In principle, the range 
of the initial frequency should be below Wdouble-side(Hz)=1/TL/10^(SNR/20), where TL is the time 
length of testing with the unit of seconds, and SNR is the signal-to-noise ratio with a unit of 
dBp. A frequency-difference-dependent simulation was performed, and the result is shown 
in Fig. S8, where the test frequency is 1 Hz, and the sampling time is 100 s. When the relative 
difference of the initial value is larger than 0.2%, the accuracy decreases up to 400 ppm from 
statistical precision. Quantitative analysis of such a turning point requires further 
mathematical investigation, but confining the initial frequency difference below 
1/5/TL/10^(SNR/20) is suggested for practical purposes to obtain a high accuracy. 

 
Fig. S8 Simulated LIF accuracy for a 0 dBp signal plus Gaussian white noise. 
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