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Topological nodal line semimetals host stable chained, linked, or knotted line degeneracies in
momentum space protected by symmetries. In this Letter, we use the Jones polynomial as a general
topological invariant to capture the global knot topology of the oriented nodal lines. We show that every
possible change in Jones polynomial is attributed to the local evolutions around every point where two
nodal lines touch. As an application of our theory, we show that nodal chain semimetals with four touching
points can evolve to a Hopf link. We extend our theory to 3D non-Hermitian multiband exceptional line
semimetals. Our work provides a recipe to understand the transition of the knot topology for protected
nodal lines.
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Introduction.—Topological phases of matter have been
attracting extensive attention in the field of condensed
matter physics [1–6]. Although the topological invariants
of gapped phases are defined globally, they can be locally
analyzed by studying the low energy theories of some
gapless points in the Brillouin zone (BZ) from a critical
phase [7,8]. For example, the Chern number can be
calculated by analyzing the mass terms around all the
Dirac points [7,9]. In this sense, all the gapped phases can
be generated from those critical gapless phases by adding
different types of perturbations [4,10].
The topological nodal line semimetals preserving chiral

symmetry or space-time inversion symmetry can host
stable one-dimensional (1D) degeneracy lines in the 3D
BZ [6]. These nodal lines can form loops [11–20], chains
[21–35], links [36–44], or knots [44,45]. Their topological
properties are not only captured by the local charge [6] but
also described by the global knot invariant [42,46–49]. Two
nodal knot semimetals (hereafter, knot refers to both link
and knot) belong to the same (topological equivalence)
classes, if their nodal lines can be deformed to each other by
nonbroken bending and stretching without crossing each
other [50]. Being analogous to a Dirac point as a topo-
logical phase transition, a touching point (TP), where two
nodal lines touch together, might be a knot transition
between two distinct knot classes. If we start from this
critical phase, by adding different types of symmetry
allowed perturbations, as the TPs are removed, different
trivial and nontrivial nodal knot semimetals can be gen-
erated, which are dubbed as generated phases. A question

naturally arises whether the knot topology of the nodal lines
can be characterized by analyzing the local evolutions
around TPs. The answer to this question provides a guide to
analyze the possible generated phases emerging from nodal
chain semimetals [21–35], which are symmetry protected
critical phases with multiple TPs.
In this Letter, we first show that the Jones polynomial

[50–52] can faithfully characterize the nodal knot semimetals
protected by chiral symmetry. Similar to the transition of
Chern insulator, we also show that the transition of Jones
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FIG. 1. The global topological invariants can be characterized
by the local physics around some special points. The Chern
insulators (nodal knot semimetals) can be viewed as generated
phases from a critical phase with one or several Dirac points
(TPs). The transition of Chern number (Jones polynomial) is
attributed to the evolution changes of Berry curvature (local nodal
lines) around the Dirac points (TPs) in the presence of perturba-
tions. Panel (b) shows two possible line orientations (types I and
II) around the TPs and the arrows indicate the directions of the
nodal lines. There are three possible local evolutions for each line
orientation.
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polynomial can be analyzed by studying the local evolutions
around all the TPs in a critical phase as shown in Fig. 1.
In particular, the low energy theory of the TP provides
additional constraints to the local evolutions and rules out the
emergence of some generated phases. In the end, we extend
the recipe of the knot topology analysis to non-Hermitian
exceptional line semimetals [49,53–56,56–59], since
Hermitian chiral symmetric systems and non-Hermitian
systems share the identical mathematical structures.
Nodal line semimetals protected by chiral symmetry.—

We start with a general 2N-bands Bloch Hamiltonian
preserving chiral symmetry

H0ðkÞ ¼ h0ðkÞτþ þ h†0ðkÞτ−; ð1Þ

where τ� ¼ ðτx � iτyÞ=2, h0ðkÞ is an N × N matrix, and
chiral symmetry operator S ¼ τz. Due to chiral symmetry,
the Hamiltonian obeys SH0ðkÞS−1 ¼ −H0ðkÞ and the
locations of the nodal lines at E ¼ 0 are determined by

det½h0ðkÞ� ¼ det½h†0ðkÞ�� ¼ γr0ðkÞ þ iγi0ðkÞ ¼ 0: ð2Þ

In other words, the two constraints of γr0ðkÞ ¼ 0 and
γi0ðkÞ ¼ 0 determine two surfaces in the 3D BZ, respec-
tively, so that their crossings form the nodal lines.
A local topological invariant characterizing each indi-

vidual nodal line is given by the winding number [52]

ν ¼ i
2π

I
ΓðK0Þ

dk · ∇kðln det½h0ðkÞ�Þ; ð3Þ

where K0 is a point located at the nodal lines and ΓðK0Þ is a
small circle enclosing the nodal line and centered at K0.
If the winding number is nonzero, the integral path is not
contractible so that these nodal lines are topologically
protected and can not be gapped in the presence of any
weak chiral-symmetric perturbations. One can also assign
an orientation to the nodal line which is given by the normal
vector of the positive winding number integral path
determined by the right-hand rule and centered at K0 [52].
Critical phase and generated phases.—Now we show

that all the generated phases from a critical phase with
perturbations can be classified by local evolutions around
every TP. Consider a critical phase with m TPs, which can

be labeled by LT1;…;Tm
. Particularly, we use m ¼ 4 as an

example [Fig. 2(a)] through this manuscript. By adding a
general form of perturbation respecting chiral symmetry

H1ðk; λÞ ¼ λh1ðk; λÞτþ þ λh†1ðk; λÞτ−; ð4Þ

where λ is an external parameter, these TPs are removed.
Since the perturbation is weak, only the local evolutions
around the TPs finally determine the linking or knotting
properties of the nodal lines. Let us take the critical phase in
Fig. 2(a) as a concrete example. To systematically study the
generated phases, we project the critical phase in the 3D BZ
[Fig. 2(a)] into a 2D plane and deform the projection to the
diagram in Fig. 2(b) based on the periodic boundary
condition of the 3D BZ. According to the directions of
the nodal lines near the TPs, there exist two different types of
TPs and the corresponding local evolutions L0=þ=−, namely
type I (type II) TP and type I (type II) local evolutions as
shown in Fig. 1(b1) [Fig. 1(b2)] [52]. In this regard, the
generated phases evolving from the critical phase (multiple
TPs) canbe labeled byLn1…nm,whereni ¼ 0;� represent the
local evolutions near the ith TP Ti; Figs. 2(c)–2(e) show
several possible generated phases. We note that Ln1;…;nm are
the 2D projection representation of the 3D knot, which is
known as knot diagram [52]. Although different projection
planes lead to distinct knot diagrams of the same knot, the
invariant, which will be given later, is independent of the
choice of the projection plane [50].
Jones polynomial.—Having obtained all the perturbation

generated phases, we define the corresponding knot invari-
ant to characterize them. In knot theory, the topology of
inequivalent knots can be distinguished by distinct knot
polynomials [50]. We specifically use the Jone polynomial
JðL#Þ to characterize knots L# in the nodal line semimetals,
since the Jones polynomial can distinguish the orientations
of the knots [60] from the directions of the winding
numbers as well as reveals that the knot topology connects
potential physical observables by using Chern-Simons
theory [46,61,62]. On the one hand, since the Jones
polynomial is a knot invariant, any two equivalent orien-
tated knots must have the same Jones polynomial. On the
other hand, the Jones polynomial for any given orientated
knot can be calculated from the skein relation [50],
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FIG. 2. Critical phase with TPs and generated phases without TPs. Panel (a) shows the nodal chain semimetal with 4 TPs. Panel
(b) shows the critical phase, which is equivalent to (a) based on the periodic boundary condition of the 3D BZ. Panels (c)–(e) show
several examples of the generated phases after the local evolutions of the 4 TPs.
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t−1JðLþÞ − tJðL−Þ þ ðt−1=2 − t1=2ÞJðL0Þ ¼ 0; ð5Þ

where Lþ, L− and L0 are the Jones polynomials of three
oriented knots having the only difference in the small red
region as shown in Fig. 1(b1). Specifically, by labeling an
unknot (ring) with O, its Jones polynomial is given by
JðOÞ≡ 1 as the starting point. By using this initial Jones
polynomial and the skein relation, we provide a simple
example to obtain the Jones polynomial of the unlink (two
separate loops). Evaluating the local evolution around
T4 in Fig. 2(c), we obtain, t−1JðLþ−0þÞ − tJðLþ−0−Þþ
ðt−1=2 − t1=2ÞJðLþ−00Þ ¼ 0. It can be checked that Lþ−0þ
and Lþ−0− are unknot [52], which implies JðLþ−0þÞ ¼
JðLþ−0−Þ ¼ 1. Solving the skien relation, we finally obtain
JðLþ−00Þ ¼ −t−1=2 − t1=2 for the unlink. We note that the
standard skein relation only connects the Jones polyno-
mials of the generated phases around type I TP. In order to
relate the Jones polynomials of all the generated phases
including the type II local evolution, we extend the skein
relation from type I to type II [Fig. 2(b2)] [52]. Therefore,
any given JðLn1;…;nmÞ can be calculated systematically via
the skein relation and the initial condition JðOÞ ¼ 1.
To demonstrate the approach of obtaining the explicit

form of the Jones polynomial, we consider the evolution of
the nodal chains with 4 TPs in the semimetals as shown in
Fig. 2(a). Due to the orientations of the nodal lines, each
local evolution near the TP can transit to three configura-
tions Lþ, L− and L0 of type I in Fig. 1(b1). First, knowing
the Jones polynomials of the unlink and the unknot, we
have JðLþ00−Þ ¼ −t−1=2 − t1=2 and JðLþ000Þ ¼ 1 and then
obtain the polynomial of the Hopf link JðLþ00þÞ ¼ −t5=2 −
t1=2 by the skein relation at T4 as illustrated in Fig. 2(d).
Second, the skein relation at T2 also connects an unknot
Lþ−0þ, a Hopf link Lþ00þ, and a trefoil knot Lþþ0þ as
shown in Fig. 2(e); hence, the trefoil knot invariant is given
by JðLþþ0þÞ ¼ −t4 þ t3 þ t. By following these rules, we
can have the Jones polynomials for the 34 configurations of
Ln1n2n3n4 listed in Table I. In this model, the topology of the
generated phases can be simply determined by the sum-
mation of the local diagram around every TP, which

is similar to the transition of Chern number as shown in
Fig. 1(a). It is not difficult to extend our analysis to the
Jones polynomial of any generic critical phase with several
TPs by using the iterations of the skein relation. Only the
local evolution around the TP plays an essential role in
determining the topology of generated phases.
Physical constraint.—We show that not only the ori-

entations of the nodal lines but also the energy dispersions
limit the possibilities of the local evolutions near the TPs.
To show the limitation from the dispersions, we first study
the conditions for the emergence of TPs in the Hamiltonian
(1). Mathematically, these TPs are considered as singularity
points of the nodal lines [52], which are defined by the
vanishing of the tangent vector along the nodal lines at the
points. Since the nodal line is located at the intersection of
two surfaces γr0ðkÞ ¼ 0 and γi0ðkÞ ¼ 0, for a point k0 on the
nodal line, the tangent vector Tðk0Þ is perpendicular to the

two normal directions ∇⃗kγ
r
0ðk0Þ and ∇⃗kγ

i
0ðk0Þ, where

∇⃗k ¼ ð∂kx ; ∂ky ; ∂kzÞ. Therefore, the tangent vector at point
k0 along the nodal line is given by

Tðk0Þ ¼ ∇⃗kγ
r
0ðk0Þ × ∇⃗kγ

i
0ðk0Þ: ð6Þ

Since the TP in the nodal line belongs to a singularity point,
the momentum kTP at the TP obeys γr0ðkTPÞ ¼ γi0ðkTPÞ ¼
TðkTPÞ ¼ 0. To have TðkTPÞ ¼ 0, the TP evolution is
classified as the three cases: (i) the two gradients are

parallel [∇⃗kγ
r
0ðkTPÞ ¼ c∇⃗kγ

i
0ðkTPÞ ≠ 0], (ii) one of the

gradients vanishes, and (iii) both vanish as shown in Fig. 3.
In particular, for cases (i) and (ii), at least one of the two

surfaces must have nonzero gradients at kTP, which satisfies

∇⃗k det½h0ðkTPÞ� ≠ 0. Since local evolutions are different in

TABLE I. The Jones polynomials represent all the generated
phases Ln1n2n3n4 evolving from the nodal chain in Fig. 2(a), where

ni ¼ 0, �1. As ∇⃗k det½h0ðkÞ� ≠ 0 each TP, the evolution is
limited to the unknot, unlink and Hopf link.

Links or knots Jones polynomial n ¼ P
4
i¼1 ni

Unknot 1 jnj ¼ 1
Unlink −t−1=2 − t1=2 jnj ¼ 0

Hopf link −t5signðnÞ=2 − tsignðnÞ=2 jnj ¼ 2
Trefoil knot −t4signðnÞ þ t3signðnÞ þ tsignðnÞ jnj ¼ 3

Solomon’s knot −t9signðnÞ=2 − t5signðnÞ=2

þt3signðnÞ=2 − tsignðnÞ=2
jnj ¼ 4 FIG. 3. The classification of the local evolution of two nodal

lines with a single TP in the viewpoint of the natural projective
plane, which is the plane spanned by the two tangential vectors at
the TP of the two nodal lines. The first column shows the low
energy theory around TP can be linear (nonvanishing gradient) or
quadratic (vanishing gradient) in different cases. Here linear
means linear dispersion of γr0 or γ

i
0 along one direction in the BZ.

This limits the possible geometry forms of the surface γr=i0 ðkÞ ¼ 0

as shown in the second column. The third column shows the
possible local evolutions under the constraint low energy theory
of TP.
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different projective planes, we specifically choose the
natural projective plane, which is spanned by the two
tangential vectors at the TP. For cases (i) and (ii), the natural
projective plane is perpendicular to the normal vector

∇⃗kγ
r=i
0 ðkTPÞ. It can be shown that for the first two cases

the TP must be type II in the natural projective plane [52],
and the local evolution near the TP is limited to the two
possibilities shown in the first two rows of Fig. 3. The
reason is that the surface with nonzero gradient at the TP
(yellow surface) can always be mapped to the natural
projective plane (light blue plane) as shown in Fig. 4(a).
The spatial limitation forbids the emergence of L− in
Fig. 1(b2). Here we emphasize that the limitation of the
local evolution holds only in the natural projective planes.
Choosing another projective plane, we have to transfer the
constraint from the natural projective plane to the chosen
plane. For example, Fig. 4(a) shows only Lþ and L0 of type
II are the only two possible local evolutions in the natural
projective plane. By changing a projective view and
applying this evolution constraint, Fig. 4(b) in the new
projective plane shows that the two possible local evolu-
tions become L− and L0 of type I in Fig. 1(b1).
On the other hand, in case (iii) neither γr0ðkÞ nor γi0ðkÞ

possesses linear terms near kTP as shown in the third row of
Fig. 3. By assuming quadratic terms of k, in the natural
projective plane, the line arrangement at the TP is con-
strained to type I, and there are three possible evolutions as
shown in Fig. 3 [52].
Nodal chain semimetals.—To demonstrate the tools we

established for the study of the knot evolution in semi-
metals, we are back to the nodal chain semimetal with 4
TPs protected by chiral and two mirror symmetries [6,23].
We consider a specific nodal chain described by the chiral
symmetric Hamiltonian (1) with h0ðkÞ¼ 2cos2kxþ
coskxþ3cosky−3coskz−1=10−2isinky sinkz as shown

in Fig. 2(a) [52]. In this model, ∇⃗k det½h0ðkTPÞ� ≠ 0 [6].
First, consider the local evolutions at T1, T3, which can

have only Lþ and L0 of type II in the natural projective
planes (blue planes) as shown in Fig. 4(a). In the other view
angle for the knot diagrams in Figs. 2(b)–2(d), L− and L0 of
type I are only two possible evolutions as shown in
Fig. 4(b). Similarly, the TPs T2, T4 in the projective planes
can evolve only to Lþ and L0 of type I in the knot diagram.
Consequently, the generated phases are constrained to be
Ln1m1n2m2

, where ni ¼ 0, 1 and mi ¼ 0;−1. Due to this
constraint from the linear dispersion, globally the chain can
evolve to an unknot (jnj ¼ 1), an unlink (jnj ¼ 0), or a
Hopf link (jnj ¼ 2) listed in Table I. As shown in Fig. 4(c),
we have a nodal Hopf link under the perturbation Eq. (4)
with λh1ðk; λÞ ¼ iλ sin 2kx. Physically, we have two ways
to control perturbations. One is to add the pressure of a
material that breaks the mirror symmetry. The other way is
that in the photonic lattice, the lattice can be designed
artificially. Hence the mirror symmetry breaking term can
be added in a controlled way [63]. Finally, using the same
recipe, we can show that the nodal chain semimetal (Ln1m1

)
with 2 TPs cannot evolve to a Hopf link (L��) when

∇⃗k det½h0ðkTPÞ� ≠ 0 at each TP [52].
Non-Hermitian exceptional line semimetals.—This rec-

ipe studying the knot topology can even be extended to the
non-Hermitian system [64–73], namely, the 3D non-
Hermitian exceptional line semimetals [49,53–56,56–59].
While in Hermitian systems the nodal lines require sym-
metry protection [6], the non-Hermitian exceptional lines
are robust against any small perturbation even in the
absence of any symmetries [49,69]. We here focus on
general N-band non-Hermitian Bloch Hamiltonians
HnHðkÞ [70–76]. According to the characteristic polyno-
mial of the Hamiltonian fðE; kÞ ¼ det½E −HnHðkÞ� ¼
ΠN

i¼1½E − EiðkÞ�, the condition for the emergence of band
degeneracy EiðkÞ ¼ EjðkÞ requires [52,77]

ΔfðkÞ ¼
Y
i<j

½EiðkÞ − EjðkÞ�2 ¼ 0; ð7Þ

where ΔfðkÞ is the discriminant of the characteristic
polynomial fðE; kÞ as a function of E [52]. For example,
if fðEÞ ¼ aE2 þ bEþ c, Δf ¼ b2 − 4ac. Hence, the sol-
ution of Eq. (7) must be a set of 1D degeneracy lines in the
3D BZ. Using the Sylvester matrix of the characteristic
polynomial to build the discriminant [52,77–79], we can
show the discriminant is a single-valued function of k.
Therefore, the topological charge can be defined by the
quantized winding number in Eq. (3) with h0ðkÞ ¼ ΔfðkÞ,
and the nonzero winding number protects the degeneracy
line and determines the knot orientation. Since the math-
ematical structures of the Hermitian chiral symmetric
systems and non-Hermitian ones are identical, the afore-
mentioned recipe can be extended to non-Hermitian
systems.
In summary, topologically protected lines emerge in

distinct condensed matter systems, such as Hermitian

1

2

3

4
L0

3

2

1

4L+

1

2

3

4
L-

3

2

1

4L0

T1 T2 T3 T4

T1/3 T1/3

T1/3 T1/3

3

2

4

1

2

4

3

1

(a)

(b)

(c)

FIG. 4. Hopf-link semimetal. Panel (a) shows the physical
constraint to the local evolutions of the TPs T1=3. Only L0=þ of
type II are possible in the natural projective plane (blue plane).
However, if we rotate the figures in (a), the local evolution
becomes L−=0 of type I as shown in (b). Panel (c) shows the Hopf-
link semimetal can be obtained from the model in Fig. 2(a) by
adding the perturbation λh1ðk; λÞ ¼ iλ sin 2kx.
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chiral-symmetric semimetals and non-Hermitian systems.
We start with nodal lines with several TPs; the Jones
polynomial characterizes the knot topology of the lines
with orientation in 3D BZ, and the topology essentially is
only determined by the local evolution near each TP. The
low energy theory limits the line orientation at any TP;
furthermore, if ∇⃗k det½h0ðkTPÞ� in the Hermitian semimetals

or ∇⃗kΔfðkTPÞ in the non-Hermitian systems does not
vanish at the TP, the corresponding local evolution is
limited to two possible ones. Our methodology provides
general rules to the evolution of the topologically protected
lines with TPs and paves the way toward searching for
exotic topological nodal knot semimetals.
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