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ABSTRACT: The development of artificial synapses has enabled the
establishment of brain-inspired computing systems, which provides a
promising approach for overcoming the inherent limitations of current
computer systems. The two-terminal memristors that faithfully mimic
the function of biological synapses have intensive prospects in the neural
network field. Here, we propose a high-performance artificial synapse
based on oxide tunnel junctions with oxygen vacancy migration. Both
short-term and long-term plasticities are mimicked in one device. The
oxygen vacancy migration through oxide ultrathin films is utilized to
manipulate long-term plasticity. Essential synaptic functions, such as
paired pulse facilitation, post-tetanic potentiation, as well as spike-
timing-dependent plasticity, are successfully implemented in one device by finely modifying the shape of the pre- and
postsynaptic spikes. Ultralow femtojoule energy consumption comparable to that of the human brain indicates its potential
application in efficient neuromorphic computing. Oxide tunnel junctions proposed in this work provide an alternative approach
for realizing energy-efficient brain-like chips.
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1. INTRODUCTION

The explosive development of intelligent technologies and
systems, such as artificial intelligence, big data, autonomous
vehicle, and image/voice recognition, has a dramatic influence
on our everyday work and life and also puts forward higher
demands for the speed and energy cost of the calculation
process.1−3 However, the improvement of classical computing
architectures is limited by a bottleneck associated with the data
transfer between the memory and central processing unit,
which is commonly called the von Neumann bottleneck.4 A
possible approach to improve the computing performance in
intelligent tasks is to store and process the information
simultaneously, which is inspired by the operation principle of
the human brain.5,6 Neurologically, massive parallel operation
and simultaneous calculation and storage are achieved with
1011 neurons and 1015 interconnecting synapses (Figure 1a).7

During the learning and adaptability processes, synapses play a
crucial role by reconfiguring their connection strength between
two linked neurons, which is called synaptic plasticity.
Therefore, implementing the fundamental functions of
synaptic plasticity into hardware is an important direction for

the realization of artificial neural networks and brain-like
chips.8−12

Two-terminal memristors with multiple nonvolatile inter-
mediate conductance states have similar structures and
transport properties as biological synapses. The basic functions
of a biological synapse, such as short-term memory (STM),
paired pulse facilitation (PPF), post-tetanic potentiation
(PTP), long-term potentiation and depression (LTP/D), and
spike-timing-dependent plasticity (STDP), can be emulated by
a single memristor.13 Various types of memristors, such as
ferroelectric tunnel junctions,14−16 conductive filament mem-
ories,17−19 phase change memories,20 and ion migration-based
resistive switching memories,21−23 have been proposed as
promising candidates for performing artificial synaptic
behaviors and neural network operations. In most oxide
memristors, oxygen vacancy migration is responsible for the
resistive switching phenomena.24 Hussein et al. reported that
donor doping in an amorphous SrTiO3 (STO) thin film (∼300
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nm) could improve the performance of memristive nano-
devices for low energy and multilevel operation.25 The
thickness of oxide films is typically much larger than 10 nm.
When the thickness of the oxide films is reduced to several
nanometers, the voltage required to drive the oxygen vacancies
will be lowered, and the distance that the oxygen vacancies
need to pass will be decreased, which will dramatically shorten
the resistance switching time and reduce the energy
consumption.
In this work, oxide tunnel junctions (OTJs) based on oxide

ultrathin films, by utilizing an ionic degree of freedom, are
introduced for neuromorphic computing. In the OTJs,
quantum-mechanical tunneling dominates at a low resistance
state (LRS), and the thermionic emission (TE) mechanism
plays a key role at a high resistance state (HRS). The
conduction mechanism can be electrically switched by the
oxygen vacancy migration. The simple structure, long
retention, and good switching reproducibility of the OTJs
make them a promising candidate for biological synapses.
Essential synaptic functions, such as STP, PPF, PTP, LTP/D,
and STDP, are implemented in a single device. These results
may promote the applications of OTJs in neuromorphic
devices.

2. EXPERIMENTAL SECTION

2.1. Device Fabrication. STO epitaxial films with a thickness of
∼2.8 nm were grown by pulsed laser deposition (PLD) on (001)-
oriented Nb-doped STO (SNTO) single-crystalline substrates (0.7 wt
%), which served as the bottom electrodes. The thickness of STO
ultrathin films was confirmed by X-ray reflection and scanning
transmission electron microscopy measurements of BaTiO3 ultrathin
films deposited under the same condition.26 A XeCl excimer laser is
used with a wavelength of 308 nm and a repetition rate of 2 Hz. The
STO films were deposited at 750 °C in a flowing oxygen atmosphere
of 1 Pa. Circular platinum electrodes with a radius of 10 μm and a
thickness of 100 nm were patterned by photolithography and e-beam
evaporation followed by a lift-off process.

2.2. Electrical Measurement and Characterization. Con-
ductive atomic force microscopy (C-AFM) measurements were
performed using a commercial scanning probe microscope (Asylum
Research MFP3D). Conductive diamond-coated silicon tips were
employed with a written voltage of ±7 V and a read voltage of +0.5 V.
During the measurement of electrical properties, the OTJ sample is
placed in a LakeShore TTPX probe station with 3 μm W probes. A
Keithley 4200 semiconductor characterization system with 4225-
PMU Ultra-Fast IV Modules is connected to the probe station to
apply the test pulses. Positive bias means that the currents flow from
the Pt electrodes to the SNTO substrates, and the SNTO substrates
were always grounded.

Figure 1. Voltage control of OTJs. (a) Schematic diagram of an artificial synapse. (b) Typical resistance hysteresis loop of an OTJ. The pristine
device state is the HRS, and the loop direction is indicated by arrows. The junction resistance is measured at Vread 0.1 V after the application of
Vwrite with different amplitudes (∼100 ms). The oxygen vacancy positions of the LRS and HRS are shown schematically in the top-left and bottom-
right insets, respectively. (c) Current mapping acquired by C-AFM over an area of 5 × 5 μm2 with the opposite write voltages. The pattern was
written by ±6.5 V and the current mapping was read by +0.5 V. (d) Current−voltage (I−V) loops for 200 cycles. (e) Fatigue property at the ON/
OFF ratio of 5 × 103 for more than 3 × 103 cycles. The write voltages are −4.3 V for the HRS and +2.2 V for the LRS, respectively. (f) Retention
property of an OTJ device up to more than 104 s. (g) Uniformity of the device resistance. The HRS (blue) and LRS (magenta) resistances of 20
different devices are shown (upper panel), with the corresponding ON/OFF ratios in the lower panel.
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3. RESULTS AND DISCUSSION

A three-layer structure composed of an ultrathin oxide film and
two conductive electrodes was fabricated as a biological
synapse. In this study, single crystalline SNTO substrates were
used as substrates and bottom electrodes. The epitaxial STO
ultrathin films with a thickness of 2.8 nm were deposited by
PLD. Then, the Pt top electrodes were patterned on the STO/
SNTO heterostructure using the standard lithography
technique.
Through adjusting the migration of oxygen vacancies by

applying an external electric field with various amplitudes, a
clear nonvolatile resistance−voltage (R−V) hysteresis loop
appeared in the OTJs (Figure 1b). The testing pulse train was
composed of write pulses with a duration of ∼100 ms and read
pulses following each write pulse. When the write voltage
(Vwrite) was swept between −4.3 and +2.2 V, the ON/OFF
ratio between the HRS (1.8 × 108 Ω) and the LRS (2.7 × 104

Ω) reached the value as high as 6.7 × 103. An extensive range
of the intermediate resistance states was observed in the R−V
loop, which denoted the gradual switching between the LRS
and HRS. As shown in Figure 1b, when a negative Vwrite was
applied to the top electrode, the positively charged oxygen
vacancies moved toward the top electrode. Then, the HRS was
formed, which was also the pristine resistance state for all the
OTJs. The I−V curve at the HRS showed an obvious
asymmetry. We demonstrated that the TE model was
responsible for the conduction mechanism based on our
fitting results (Figure S1a, Supporting Information).26 The
extracted Schottky barrier height ΦB of 0.55 eV was acquired
by fitting the I−V curve with the exponential function. In
contrast, when the negative Vwrite was reversed to the positive
voltage, the oxygen vacancies moved away from the top
electrode, and LRS was produced. The local I−V curve at the
LRS showed a tunneling behavior, which was further
confirmed by fitting the curve with the direct tunnel (DT)
model and the Fowler−Nordheim tunneling (FNT) model
(Figure S1b, Supporting Information). The DT barrier heights
at the Pt/STO and STO/SNTO interfaces were 0.35 and 0.41
eV, respectively, and the FNT barrier height was 0.075 eV.

More calculation details could be found in Note S1 in the
Supporting Information.
To characterize the voltage-dependent resistance states on

the microscale, C-AFM measurements were conducted by
using two opposite voltages (Figure 1c). The pattern was
written by applying an external voltage of −6.5 V to a square of
5 × 5 μm2 and +6.5 V to a square of 2.5 × 2.5 μm2 inside it. A
dc bias of +0.5 V was applied to acquire the resistance mapping
properties. In agreement with the R−V results, the current of
the inner domain exhibited a larger value. On the contrary, the
outer area written by a negative voltage remains at HRS. This
means that positive voltages induce the LRS, consistent with
the patterned device measurements.
We investigated the reliability performance of the OTJ

devices. An I−V hysteresis loop for 200 cycles with high
reproducibility was obtained (Figure 1d). The asymmetry of
the R−V and I−V loops was ascribed to the difference between
the top and bottom electrodes. The ON/OFF ratio of the OTJ
could be maintained at about 5 × 103 after switching between
the HRS and LRS for more than 3000 cycles (Figure 1e),
suggesting the good switchability property. Moreover, the
retention test of the HRS and LRS was performed for more
than 104 s, indicating a good nonvolatility (Figure 1f).
Therefore, we tested the resistance values of 20 different
devices, indicating a good uniformity (Figure 1g). Here, Vwrite
was −4.3 V for the HRS and +2.2 V for the LRS, and the read
voltage (Vread) was +0.1 V.
Human brain constantly accepts and processes complicated

information. Neurobiologically, this information is transmitted
as an electrical signal between the synapses, which causes a
change in the strength of the synaptic connection, called as
synaptic plasticity. Synaptic plasticity, consisting of STM and
long-term memory (LTM), is the basis for information
processing and memory formation in the human brain.27,28

In our OTJs, synaptic plasticity of both STM and LTM
characteristics can be emulated through the use of input pulse
amplitude and duration. STM can be achieved using voltages
less than the threshold value (Figure 2a). When a presynaptic
pulse is applied, the excitatory postsynaptic current (EPSC)
rises immediately and then gradually decreases to the resting
value. STM is capacitive in nature.29 Therefore, the relaxation

Figure 2. Short-term plasticity emulated in OTJs. (a) Instantaneous response current triggered by the small presynaptic spikes. The applied voltage
consists of a series of programming voltages with the same duration of 50 ns and different amplitudes of 0.2, 0.6, and 1 V. (b) EPSCs corresponding
to the STM stimulus with different trigger frequencies. The pulse amplitude is 0.6 V and the pulse width is 50 ns. (c) Peak currents as a function of
stimulation number and frequency summarized from (b). (d) PPF and PTP characteristics of OTJs. The experimental data are expressed by the
hollow circles, and the fitting results are expressed by the solid curves.
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process of the OTJ-based artificial synapses can be described
by an exponential decay function, I = I0 exp(−t/τ1), where R0

is the circuit resistance, and τ1 is the relaxation time constant
which is closely related to the forgetting rate.30 The fitting
results to the decay curves and related parameters are shown in
Figure S2, Supporting Information. Figure 2b shows the EPSC
triggered by presynaptic pulses with different frequencies in the
STM mode. The stimulus consisted of 10 identical pulses with
a voltage of 0.6 V and a pulse width of 50 ns. To clearly show
the changes in the EPSC peak at different frequencies, the
EPSC peak versus stimulation number is demonstrated in
Figure 2c. When the pulse frequency increased, the peak value
also increased because of the influence of the previous pulse.
The temporary enhancement of the EPSC provides the basis

for the OTJ device to simulate the PPF and PTP character-
istics in biological synapses. PPF and PTP, the two forms of
the most well-known STM phenomena, depict the temporary
boost of synaptic weight evoked by the second and the 10th
pulse, respectively. In an OTJ device, successive stimuli with
the pulse intervals that are comparable or shorter than the
relaxation time can be utilized to simulate the PPF and PTP
phenomena (Figure 2d). The PPF and PTP responses as the
functions of time interval (Δt) were measured using a spike
amplitude of 0.6 V and a spike duration of 50 ns (Figure S3,
Supporting Information). The indexes of PPF [(A2 − A1)/A1

ratio given in %] and PTP [(A10 − A1)/A1 ratio given in %]
decreased almost exponentially as Δt increased, similar to the
response of biological synapses.31

LTM, containing LTP and LTD, is essential for implement-
ing the brain-like computation in artificial synapses.27 In OTJ
devices, STM can be transited to LTM by varying different
parameters. The conductance of an OTJ device is adjusted
successfully by nanosecond pulse with different amplitudes
(Figure 3a). By increasing the spike amplitude (from 0.9 to 3.6
V), the obtained channel currents decayed to the stable values
that were larger than the initial value after each spike (from 8.5
to 65.5 nA). The corresponding conductance changes with the
spike amplitude are shown in Figure S4 in the Supporting
Information. The transition from STM to LTM can also be
realized by increasing the width of the presynaptic spikes.
Figure 3b illustrates the EPSCs obtained by applying the
stimuli with different widths. The pulse amplitude was fixed to
1.5 V. The training results show an obvious potentiation of the
conductance as the pulse width increased, and all the EPSCs
finally reached a saturated value (Figure S5, Supporting
Information) by alternately applying a series of 20 identical
pulses (+2.2 and −2.5 V, 50 ns) for 100 cycles. Switching
between the LTP and LTD in the OTJ device was obtained at
a conductance between 1 and 10.5 μS (Figure 3c). The
conductance in both rising and falling processes was set to 20
intermediate states.
By combining the characteristics of the STM and LTM,

complicated forms of memory behavior, for example, STDP,
can be employed to achieve complex synaptic functions. As the
Hebbian model shows,32 STDP is defined as a synaptic
modification arising from the precise relative timing of fired

Figure 3. (a) Currents stimulated by the presynaptic spikes with different amplitudes and the same duration of 100 ns. The current compliance is
115 nA. (b) Dependence of the device conductance on the spike duration. The spike amplitude is 1.5 V. The current compliance is 115 nA. (c) 20
LTP/D conductance states for 100 cycles obtained by alternating positive (+2.2 V) and negative (−2.5 V) pulse trains. (d,e) Implementation of
STDP learning in OTJ devices. Antisymmetric (d) and symmetric (e) Hebbian learning rules are realized in one device. The solid fitting lines are
calculated by eqs 1 and 2. (f) Energy consumption per spike as a function of the presynaptic pulse amplitude.
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spikes of connected neurons. STDP plays an important role in
information processing, associated with learning and neural
network functions.33,34 To demonstrate the conductance
modulation of STDP functionality in OTJ devices, various
STDP forms were implemented by adopting typical strategies
used in biological synapses and electronic synapses.35

In the antisymmetric Hebbian learning STDP form, the sign
and magnitude of a synaptic weight depend on the relative
time sequence and interval of the pre- and postsynaptic spike
sequences (Δt). Both the pre- and postsynaptic sequences
consist of a series of progressively increasing negative pulses
and a large positive pulse with a duration of 1 μs (Figure S6,
Supporting Information). Here, the voltage of both presynaptic
spikes (Vpre) and postsynaptic spikes (Vpost) is less than the
threshold voltage of ±1.5 V. When the presynaptic spikes are
triggered preceding the postsynaptic spikes (Δt > 0), the
synaptic weight is strengthened, and LTP occurs. On the other
hand, when the order is reversed (Δt < 0), LTD occurs (Figure
3d). Thus, the law of antisymmetric Hebbian learning STDP
form can be expressed by an exponential function36,37

τ
Δ = −Δ +W A

t
Wexp

2
0

i
k
jjjjj

y
{
zzzzz (1)

where ΔW denotes the nonvolatile percent change of synaptic
weight, A denotes the scaling factor, τ2 denotes the time
constant, andW0 denotes a constant. In the OTJ test, A of 96.3
and τ2 of 4.4 μs were used in the LTP branch, and A of −53.1
and τ2 of −4.2 μs were used in the LTD branch. The fitting
results are demonstrated by the solid curves (Figure 3d). When
the absolute value of Δt decreased, the maximum absolute

value of Vpre − Vpost increased. This results in the strengthening
or weakening of the device conductance, depending on the
sign of Δt.
The symmetric Hebbian learning STDP form can also be

realized in OTJs by selecting the appropriate shapes of pre-
and postsynaptic spikes (Figures 3e and S7, Supporting
Information). LTP occurs when Δt was close to 0, and LTD
occurs when Δt moves away from 0.38 The characteristics of
the symmetric Hebbian learning STDP form can be
generalized by a Gaussian function

τ
Δ = −Δ +W A

t
Wexp

2

3
2 0

i

k
jjjjj

y

{
zzzzz

(2)

In the fitting curve presented in Figure 3e, A = 88.0 and τ3 =
3.3 μs. The STDP forms in OTJs are 4 orders of magnitude
faster than those in the human brain.
We estimated the energy consumption of our OTJs. We

initialized the resistance state and measured the EPSCs by
applying 20 ns pulses of different pulse amplitudes. We find
that, with the pulse width of 20 ns, STM becomes LTM if the
pulse amplitude exceeds the threshold voltage of 1.8 V. The
energy consumption can be calculated by E = V × I × t, where
V, I, and t represent the pulse amplitude, the current (20 ns),
and the pulse width, respectively. Therefore, the energy
consumptions of STM and LTM are respectively 0.026 and
0.46 fJ, comparable with that of human synapses (1−10 fJ)
(Figure 3f). These values are favorable compared with other
two-terminal artificial synapses (hundreds of femtojoules for
0.1 μm2).14,15,39

Figure 4. Image memorization in an artificial synapse array. (a) Three types of pulse sequences represented by the letters “C” (the short-term
potentiation mode), “H” (the long-term potentiation mode), and “N” (the short-term potentiation mode). Ten consecutive stimulus pulses with
the duration of 50 ns, amplitude of 0.9 and 1.5 V, and pulse frequency of 5 and 0.5 MHz are input into the synapse array. (b−d) Images “C”, “H”,
and “N” just after the last pulse [blue arrows in (a)]. (e−g) Images “C”, “H”, and “N”, 25 μs after the last pulse [orange arrows in (a)]. The read
voltage of 0.1 V was used here. (h) Retention property of the letter “H” up to 500 s.
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To further illustrate the coexistence of both STM and LTM,
a synapse array consisting of 25 individual OTJs was employed
to implement the reconfigurable and trainable memory
behavior. This experiment also mimicked the selective
activation in the parietal cortex. Three letters were successively
input into the selected individual pixels: (1) the letter “C” in
the STM mode (10 stimuli with a low amplitude of 0.9 V and a
high frequency of 5 MHz); (2) the letter “H” in the LTM
mode (10 stimuli with a high amplitude of 1.5 V and a high
frequency of 5 MHz); and (3) the letter “N” in the STM mode
(10 stimuli with a high amplitude of 1.5 V and a low frequency
of 0.5 MHz) (Figure 4a). The pulse duration was fixed at 50
ns, and the read voltage was fixed at 0.1 V. All pixels were
initialized to the HRS before the electrical stimuli. The pixel
resistances were read individually at the end of the training
process (blue arrows) and 25 μs later (orange arrows),
respectively. To intuitively illustrate the memorization and
forgetting process, the memorized patterns at these moments,
indicated by blue and orange arrows, are depicted in Figure
4b−g. After training with the three letters, the current of each
corresponding pixel exhibited a temporary enhancement
(Figure 4b−d). As time passed, the currents representing the
letters “C” and “N” gradually disappeared (Figure 4e,g). In
contrast, the excitatory currents of pixels corresponding to the
letter “H” were maintained because of the LTM nature (Figure
4f). The letter “H” showed good stability and remained
unchanged for more than 500 s (Figure 4h). This process is
similar with the memory behavior in the human brain.

4. CONCLUSIONS
In summary, we presented robust artificial synapses based on
OTJs with the oxygen vacancy migration. The energy
consumption of the two-terminal device is reduced to an
ultralow level of femtojoules by exploiting an ultrathin oxide
layer. Our experimental results provide evidence for various
types of important synaptic functions such as STM, PPF, PTP,
LTP, and LTD. By finely tuning the shape of the pre- and
postsynaptic spikes, antisymmetric and symmetric Hebbian
learning STDP forms are realized. Our artificial synapse based
on OTJs represents a promising approach for energy-efficient
brain-like computing.
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