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The interplay between lattice gauge theories and fermionic matter accounts for fundamental physical
phenomena ranging from the deconfinement of quarks in particle physics to quantum spin liquid with
fractionalized anyons and emergent gauge structures in condensedmatter physics. However, except for certain
limits (for instance, a large number of flavors of matter fields), analytical methods can provide few concrete
results. Here we show that the problem of compact Uð1Þ lattice gauge theory coupled to fermionic matter in
ð2þ 1ÞD is possible to access via sign-problem-free quantum Monte Carlo simulations. One can hence map
out the phase diagram as a function of fermion flavors and the strength of gauge fluctuations. By increasing the
coupling constant of the gauge field, gauge confinement in the form of various spontaneous-symmetry-
breaking phases such as the valence-bond solid (VBS) and Néel antiferromagnet emerge. Deconfined phases
with algebraic spin and VBS correlation functions are also observed. Such deconfined phases are incarnations
of exotic states of matter, i.e., the algebraic spin liquid, which is generally viewed as the parent state of various
quantumphases. The phase transitions between the deconfined and confinedphases, aswell as that between the
different confined phases provide various manifestations of deconfined quantum criticality. In particular, for
four flavorsNf ¼ 4, our data suggest a continuous quantum phase transition between the VBS andNéel order.
We also provide preliminary theoretical analysis for these quantum phase transitions.

DOI: 10.1103/PhysRevX.9.021022 Subject Areas: Condensed Matter Physics,
Particles and Fields

I. INTRODUCTION

The interplay between lattice gauge theories and fer-
mionic matter has allured the imagination of physicists for

several decades [1–15]. This is because gauge fields
coupled to matter fields is a fundamental concept in many
areas of physics. For example, in condensed matter,
ð2þ 1ÞD field theories with a compact Uð1Þ gauge field
coupled to gapless relativistic fermions often serve as the
low-energy effective field theories in 2D strongly correlated
electron systems including cuprate superconductors [1,2,
5–7] and quantum spin liquids [11–14,16]. In high-energy
physics, the mechanism of quark confinement in gauge
theories with dynamical fermions such as quantum
chromodynamics (QCD) is among the most elusive sub-
jects, and the absence or presence of a deconfined phase in
3D compact quantum electrodynamics (cQED3) coupled to

*wanderxu@gmail.com
†qiyang@fudan.edu.cn
‡zymeng@iphy.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 021022 (2019)

2160-3308=19=9(2)=021022(17) 021022-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.021022&domain=pdf&date_stamp=2019-05-02
https://doi.org/10.1103/PhysRevX.9.021022
https://doi.org/10.1103/PhysRevX.9.021022
https://doi.org/10.1103/PhysRevX.9.021022
https://doi.org/10.1103/PhysRevX.9.021022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(not necessarily large) Nf massless fermions has attracted a
lot of attention [4,10–15] and remains unsolved to this day.
In recent years, collective efforts from both condensed

matter and high-energy physics have started to generate
promising outcomes [4,12,17–26]. There exist concrete
examples, by now, of discrete Z2 gauge field theories
coupled to fermionic matter at ð2þ 1ÞD, deconfined phase
with fractionalized fermionic excitations at weak gauge
fluctuation, as well as symmetry-breaking phase with
gapped fermionic excitations at strong gauge fluctuation
have been observed [18–20]. The apparently continuous
transition between the deconfined and confined phases is
highly nontrivial [20], as it is driven by the condensation of
emergent fractionalized excitations and is hence beyond the
scope of the Landau-Ginzburg-Wilson paradigm of critical
phenomena in which symmetry breaking is described by a
local order parameter.
The cQED3 is the simplest theory to discuss confinement

and chiral symmetry breaking [27–29]. The pure cQED3

without a matter field is known to be always confining
[10,27,30,31]. However, when there is fermionic matter,
the gapless fermionic fluctuations may drive the system
towards deconfinement. The large-Nf limit of cQED3

with fermionic matter is believed to belong to this case
[11,13,15,32], but the existence of the deconfined phase for
small Nf is still under debate [12,17,33–36]. Analytically,
the perturbative calculation at small Nf is uncontrolled.
Numerically, recent hybrid Monte Carlo (HMC) calcula-
tions in Ref. [17] faced difficulties caused by fermion zero
modes. Though these difficulties may be cured by turning
on a four-fermion interaction term, the scaling dimension of
the four-fermion interaction will receive corrections from
gauge fluctuation at the order of 1=Nf, which may lead to a
relevant runaway flow in renormalization group (RG)
calculation [37]. Thus, a combined RG flow of monopole
and four-fermion interactions may be complicated, and a
deconfined phase could still exist in the phase diagram but
evades the previous study of HMC. cQED3 with finite Nf

flavors of fermionic matter is particularly important to
condensed matter physics because these cases actually
correspond to the low-energy field theory description of
many interesting strongly correlated electron systems, and
therefore host the potential promise of establishing the new
paradigms in condensed matter physics. Furthermore,
perturbative renormalization-group calculations to higher
orders have recently been carried out in attempt to acquire
the critical properties of the deconfinement-to-confinement
transition in the form of QED3-Gross-Neveu universality
classes [38–41].
Based on these considerations, in this work, we succeed

in performing large-scale quantum Monte Carlo (QMC)
simulations on the cQED3 coupled to Nf flavor of fermions
and eventually map out the phase diagram (Fig. 1) in the
fermion flavor and gauge field fluctuations strength plane.
Deconfined phases—Uð1Þ deconfined phase (Uð1ÞD here-
after) to be more precise—are indeed found in the phase
diagram for Nf ¼ 6 and 8, and even at Nf ¼ 2 and 4 there
are very positive signatures of their existence. Various
confined phases in the form of different symmetry break-
ings, such as antiferromagnetic order (AFM) and valence-
bond solid (VBS), are also discovered. Interesting quantum
phase transitions between deconfined and confined phases
and between different confined phases [18,42–46] are
revealed as well.
For the sake of a smoother narrative, the rest of the paper

is organized in the following order. In Secs. II A and II B,
we first start with a quantum rotor model coupled to
fermions, which can be formulated as cQED3 coupled to
fermionic matter. Then in Sec. II C, we discuss the sign
structure of this model, where we find that a pseudounitary
group can be used to avoid the phase problem at odd Nf

and the sign problem at even Nf. In Secs. II D and II E, we
explain the challenges in the QMC simulation even without
the sign problem and provide our solution with a fast
update algorithm for simulating gauge fields with continu-
ous symmetries. In Sec. III, we discuss the whole phase
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FIG. 1. (a) Phase diagram spanned by the Fermi flavors Nf and the strength of gauge field fluctuations J of the model shown in (b).
Uð1ÞD stands for the Uð1Þ deconfined phase where the fermions dynamically form a Dirac system. This phase corresponds to the
algebraic spin liquid where all correlation functions show slow power-law decay. VBS stands for valence-bond-solid phase and AFM
stands for the antiferromagnetic long-range ordered phase (Néel phase). (b) Sketch of the model of Eq. (1). The yellow circles represent
the gauge field attached to each fermion hopping, and the yellow dashed lines stand for the flux term per plaquette. (c) The gauge-
invariant propagator for fermions with a string of gauge fields attached.
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diagram and then focus on the physical properties and
understanding of the Uð1ÞD phase, in particular, the reason
for it being the parent state of various quantum phases, the
deconfinement-confinement phase transitions, and VBS-to-
AFM phase transition at Nf ¼ 4. Preliminary theoretical
analysis of these transitions is also given in Sec. III. Finally,
the discussion and conclusions are given in Sec. IV.

II. MODEL AND METHOD

A. Rotor model with fermions

The system we are interested in can be most conveniently
formulated as a 2D quantum rotor model coupled to
fermions with Hamiltonian

H ¼ 1

2
JNf

X
hi;ji

1

4
L̂2
ij − t

X
hi;jiα

ðĉ†iαeiθ̂ij ĉjα þ H:c:Þ

þ 1

2
K Nf

X
□

cosðcurlθ̂Þ; ð1Þ

where L̂ij and θ̂ij are canonical angular momentum,

½L̂ij; e�iθ̂ij � ¼ �e�iθ̂ij , and its coordinate operator of rotors
on each bond b ¼ hiji of a 2D square lattice, as depicted in
Fig. 1(b). The fermion flavor α runs from 1 to Nf, and the
fermions are minimally coupled to the rotor via nearest-
neighbor hopping on the square lattice. The flux term with
K > 0 favors π flux in each elementary plaquette□, where
the magnetic flux of each plaquette □ is defined as
curlθ̂ ¼ P

b∈□ θ̂b, and the summation over θ̂b is taken in
either clockwise or anticlockwise orientation around an
elementary plaquette.
For the Monte Carlo simulations, it is convenient to

work in a representation where θ̂ij is diagonal. That is,
omitting the bond index θ̂jϕi ¼ ϕjϕi with ϕ ∈ ½0; 2πÞ. In
this representation, L̂ ¼ −i½∂=ð∂ϕÞ� with eigenvectors
L̂hϕjli≡ L̂eiϕl ¼ leiϕl and l ∈ Z. With these defini-
tions, the resolution of unity reads

R
2π
0 jϕihϕj ¼

½1=ð2πÞ�Pl jlihlj ¼ 1̂. To formulate the path integral, we
have to estimate the matrix element: hϕ0je−ΔτJNfL̂

2=8jϕi. To
this end, we insert resolution of the unit operator and use
the Poisson summation formula to obtain

hϕ0je−ΔτJNfL̂
2=8jϕi ∼ e−½4=ðΔτJNfÞ�½1−cosðϕ−ϕ0Þ�; ð2Þ

where the Villain approximation is used. With the
above, the Hamiltonian in Eq. (1) can be formulated in
a coherent-state path integral with action S ¼ SF þ Sϕ ¼R β
0 dτðLF þ LϕÞ, and the Lagrangian for the fermion and
gauge field parts is

LF ¼
X
hijiα

ψ†
iα½ð∂τ − μÞδij − teiϕij �ψ jα þ H:c:;

Lϕ ¼ 4

JNfΔτ2
X
hiji

f1 − cos½ϕijðτ þ 1Þ − ϕijðτÞ�g

þ 1

2
KNf

X
□

cos ðcurlϕÞ; ð3Þ

respectively, where μ is set to zero for the half-filled case.
β ¼ ð1=TÞ is the inverse temperature. The model in Eq. (1)
is now explicitly formulated as (unconstrained) cQED3

coupled to fermionic matter [11,13,17]. We now consider
the symmetries of the model and show that the Gauss law is
dynamically imposed in the low-temperature limit.

B. Symmetries and limiting cases

Our model [see Eq. (1)] has global and local symmetries.
It enjoys a manifest global SUðNfÞ spin symmetry as well
as a particle-hole symmetry:

P̂−1zĉ†iαP̂ ¼ z̄ð−1Þiĉiα: ð4Þ

In the above, z is a complex number that makes it clear that
the particle-hole symmetry is antiunitary, and ð−1Þi takes
the value 1 (−1) on sublattice A (B).
The local Uð1Þ gauge transformation

ĉiα → ĉiαeiφi ; θ̂ij → θ̂ij þ φi − φj ð5Þ

is an invariant. The generator of this local symmetry
corresponds to a local conserved charge (Gauss law)

Q̂i ¼ −
X
j

L̂ij þ
X
α

ðĉ†iαĉiα − 1=2Þ ð6Þ

with ½Q̂i; Ĥ� ¼ 0. In our simulations, we sample over all Q̂i
sectors, such that our Hamiltonian corresponds to an
unconstrained gauge theory. As a consequence, the corre-
lation functions of gauge-dependent quantities such as the
single-particle operator are local in space but not in time:
hĉ†iαðτÞĉjαi ¼ δi;jhĉ†iαðτÞĉiαi. Below, we argue that the
Gauss law constraint is dynamically imposed in the
zero-temperature limit.
At J ¼ ∞, L̂ij vanishes and charges are completely

localized since hopping on a given bond involves excita-
tions of the rotor mode. In this limit, charge configurations
corresponding to specific values of Q̂i are degenerate, and
at any finite value of J the degeneracy will be lifted. The
dynamical generation of the term

ĤQ ¼
X
i;j

Ki;jQ̂iQ̂j þ � � � ð7Þ
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accounts for the lifting of this degeneracy. Note that since
fP̂; Q̂ig ¼ 0, the terms containing products of odd numbers
of Q̂i ’s are forbidden. The above equation defines a
classical model with a finite-temperature Kosterlitz-
Thouless transition. At zero temperature, the Q̂i are frozen
in a given pattern, and the Gauss law is imposed.
For J → ∞, our model maps onto an SUðNfÞ quantum

antiferromagnetic. We again start from the J ¼ ∞ degen-
erate case and consider t in second-order degenerate
perturbation theory. As we mention above, hopping of a
fermion with flavor index α from site i to nearest-neighbor
site j leaves the rotor in an excited state associated with
energy cost J. The only way to remove this excitation is for
a fermion with flavor index α0 to hop back from site j to
site i. These processes are encoded in the SUðNfÞ
Heisenberg model

ĤJ→∞ ∝ −
t2

J

X
hiji

ðD̂†
ijD̂ij þ D̂ijD̂

†
ijÞ ð8Þ

with D̂ij ¼
PNf

α¼1 ĉ
†
iαĉjα. In our simulations, we have on

average Nf=2 fermions per site such that the representation
of the SUðNfÞ group corresponds to the antisymmetric self-
adjoint representation (i.e., the Young tableau correspond-
ing to a column of Nf=2 boxes) [47]. On the square lattice
and for even values of Nf where the negative sign problem
is absent, this model has been considered in former
auxiliary field QMC simulations [12]. At Nf ¼ 2, one
finds an antiferromagnetic state, and at and beyondNf ¼ 6,
a VBS state. In the large-Nf limit, we recover the Marston-
Affleck [2] saddle point accounting for dimerization. At
Nf ¼ 4 and in the absence of charge fluctuations, Ref. [12]
finds no compelling evidence of VBS and AFM orders
when considering lattices up to 24 × 24. On the other hand,
simulations of the corresponding SU(4) Hubbard model
[48] are consistent with an AFM state in the large-U limit
albeit with decreasing value of the order parameter as a
function of U. In our simulations, charge fluctuations are
present, and the phase diagram is consistent with AFM
order in the large-J limit.
At J ¼ 0, θ̂ij becomes a classical variable in the sense

that it has no imaginary time dynamics. Even in the absence
of the flux term (K term) the coupling to the fermions
favors, according to Lieb’s theorem [49], a π flux per
plaquette, with associated dynamically generated Dirac
dispersion relation of the ĉ fermions. The fate of this state
at low values of Nf and when gauge fluctuations are
accounted for is one of the central aims of our research.

C. Absence of the sign problem for even Nf

To simulate the above model with the quantum
Monte Carlo method, we start with the partition function

Z ¼
Z

Dðϕ; ψ̄ ;ψÞe−ðSϕþSFÞ ¼
Z

Dϕe−SϕTrψ ½e−SF �: ð9Þ

As the action of the gauge field part Sϕ ¼ R β
0 dτLϕ with Lϕ

shown in Eq. (3) is always real (thus, its exponential is
always positive), the sign structure of the Monte Carlo
weight will come only from the trace over fermions. To
trace out fermions, we first discretize the imaginary time
τ ¼ zΔτ (z ¼ 1; 2;…; Lτ) where Lτ is the total number of
time slices (LτΔτ ¼ β). Then, performing the fermion
trace, we have

Trψ ½e−SF � ¼
�
det

�
I þ

YLτ

z¼1

Bz

��
Nf

; ð10Þ

with SF ¼ R β
0 dτLF and LF shown in Eq. (3). After the

discretization of β, Bz ¼ e−ΔτVz with Vz the coupling
matrix for each fermion flavor [we have Nf in total;
therefore, there is power Nf in Eq. (10)], which has only
elements connecting the sites between different sublattices
of the square lattice ðVzÞij ¼ −teiϕij . We recognize that
such kinds of Bz matrices form a pseudounitary group
SUðn; nÞ where 2n is a dimension of Bz (total number of
sites). As proved in the Appendix B, ∀D ∈ SUðn; nÞ,
detð1þDÞ ∈ ℜ holds. Therefore, the fermion weight will
always be real for all integers Nf and, most importantly, be
semi-positive-definite for all even values of Nf such that
QMC simulations can be performed. Although the current
paper focuses only on the compact Uð1Þ gauge fields, the
SUðn; nÞ group actually allows one to add extra non-
Hermitian terms to the model, such as a staggered imagi-
nary chemical potential, that are also sign-problem-free for
even values of Nf. It will be very interesting to study the
non-Hermitian models and their properties in the presence
of gauge field fluctuations and electronic interactions in
future investigations.

D. Difficulties of the QMC simulation

Although there is no sign problem for even Nf, the
simulation of Eq. (1) is by no means simple. Earlier
attempts in the high-energy community have been devoted
to simulate similar models by means of the hybrid
Monte Carlo [4,17,35,50] with (dynamical) mass term.
Mass terms are essential to avoid divergences when
calculating forces in the realm of Hamiltonian [51] and
Langevin [52] dynamics. Mass terms, however, introduce
biases the severity of which have to be a posteriori
clarified.
On the other hand, in the condensed matter community,

the determinantal QMC (DQMC) is more popular, and it
usually uses local updates and the mass terms are not
essential here [53–56]. However, as far as we are aware,
there exists no DQMC simulation on cQED3 coupled to
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fermionic matter, and our work hence serves as a first
attempt. As we explain below, to be able to simulate the
model in Eq. (1), there are several obstacles one needs to
overcome.
The most obvious obstacle is the computational com-

plexity. For general models, the computation complexity
of DQMC for one sweep is OðβN4Þ (here, N is the total
number of sites) for models where a fast update is
applicable, the complexity can be reduced to OðβN3Þ.
The most common example is the Hubbard model with
on-site interaction; when we flip a single auxiliary field at
time slice z and site i, it changes only one diagonal value in
the Bz matrix, then the new equal-time Green’s function
G0ðτ; τÞ can be calculated as

G0 ¼ ½I þ B1B2;…; Bz−1ðI þ ΔÞBz;…; BLτ−1BLτ
�−1

¼ G½I þ ΔðI − GÞ�−1; ð11Þ
where G is the Green’s function at the previous step.
As Δii is the only nonzero element in the N × N matrix Δ,
Δð1 − GÞ can be written as the outer product of two
vectors, and then the Sherman-Morrison formula can be
used to reduce the complexity of calculating Eq. (11) from
OðN3Þ to OðN2Þ [53,54]. Such an update scheme is
referred as the fast update. For one sweep over all auxiliary
fields [scales asOðβNÞ], the scaling will beOðβN3) instead
ofOðβN4Þ. For models with off-site interaction, e.g., in our
case due to the coupling between the fermion and gauge
field, usually we need to make a further Suzuki-Trotter
decomposition over all bonds (assume bond b connects site
i and j, and the total number of bonds is Nb), and the Bz
matrix is written as

Bz ¼
YNb

b¼1

Bz;b; ð12Þ

where Bz;b ¼ ehz;b and hz;b is an N × N matrix with only
nonzero elements Bz;bði; jÞ ¼ Bz;bðj; iÞ� ¼ fðϕijÞ where
fðϕijÞ ¼ ρðϕijÞeiθðϕijÞ is the complex function of auxiliary
field ϕij in polar form. It is obvious that only when
θðϕijÞ ¼ 0 or π, Bz;bði; jÞ will be diagonalized by an
auxiliary-field-independent unitary transformation, and
then the aforementioned fast update scheme applies.
There are many known models that belong to this case,
such as models with Heisenberg-type interaction [57–59],
models with the Z2 (bosonic) gauge field coupled to
fermionic matter [18,19,60,61], etc. Novel physics has
been found in these models; e.g., in Ref. [58] a continuous
phase transition with fermion mass generation without
spontaneously breaking any symmetry was identified
(similar physics was also found in the lattice QCD
community [62–65]). Unfortunately, our model in
Eq. (1) involves Uð1Þ gauge fields, and the auxiliary field
ϕij is therefore a continuous variable and θðϕijÞ ¼ ϕij;
thus, our model does not belong to the cases discussed
above, and naively the fast update cannot be applied.

E. Fast update algorithm designed for Uð1Þ gauge fields
There is indeed an alternative way to design a fast update

algorithm for the model in Eq. (1). It is based on the
Woodbury matrix identity that effectively generalizes the
Sherman-Morrison formula to higher-rank matrices. We
recognize that the new B0

z;b after a single update can directly
be factorized into ð1þ ΔÞBz;b with

�Δii Δij

Δji Δjj

�
¼

� ð1 − e−iðϕij−ϕ0
ijÞÞsinh2Δτ ð−eiϕij þ eiϕ

0
ijÞ sinhΔτ coshΔτ

ð−e−iϕij þ e−iϕ
0
ijÞ sinhΔτ coshΔτ ð1 − eiðϕij−ϕ0

ijÞÞsinh2Δτ

�
; ð13Þ

and other elements of the N × N matrix Δ are zero. With
such kind of structure and note that Eq. (11) still holds,
Δð1 − GÞ can be written as product of two matrices with
dimension N × 2 and 2 × N. Therefore, we can use the
generalized version of the Sherman-Morrison formula (the
Woodbury matrix identity) to calculate Eq. (11), which also
has complexity OðN2Þ.
With such a specially designed fast update, we are now

ready to simulate cQED3 coupled to fermionic matter
without an artificial mass term and still enjoy the
OðβN3Þ computational complexity.

III. RESULTS

A. Physical observables

Our model and major results are schematically summa-
rized in Figs. 1(a) and 1(b), respectively, but before starting

the discussion of QMC results, we first introduce the QMC
observables that are used to characterize the symmetric and
symmetry-breaking phases and their phase transitions.
Since physical observables are Hermitian, we construct
and measure various gauge-invariant structure factors,
including spin χSðkÞ and dimer χDðkÞ structure factors.
They are defined as

χSðkÞ ¼
1

L4

X
ij

X
αβ

hSαβðiÞSβαðjÞieik·ðri−rjÞ; ð14Þ

χDðkÞ ¼
1

L4

X
ij

ðhDiDji − hDiihDjiÞeik·ðri−rjÞ; ð15Þ

where the spin operator SαβðiÞ¼c†iαciβ−½1=ðNfÞ�δαβP
γc

†
iγciγ , and the dimer operator Di¼

P
αβS

α
βðiÞSβαðiþx̂Þ
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is defined as the dimer along the nearest-neighbor bond in
the x̂ direction.
From these structure factors, one can further construct

dimensionless quantities—the correlation ratio [66]—to
determine the precise position of the phase transitions. If
one would like to detect the transition towards antiferro-
magnetic long-range order, the antiferromagnetic correla-
tion ratio is

rAFM ¼ 1 −
χSðXþ δqÞ

χSðXÞ ; ð16Þ

where X ¼ ðπ; πÞ is the order wave vector for the AFM on
the square lattice, and δq ¼ f½ð2πÞ=L�; 0g is the smallest
momentum away from X. In the same vein, we define the
correlation ratio for the VBS order from the dimer structure
factor

rVBS ¼ 1 −
χDðMþ δqÞ

χDðMÞ ; ð17Þ

where M ¼ ðπ; 0Þ is the order wave vector for the VBS.
Other quantities, such as the energy density and various
correlation functions (spin, dimer) in real space, are also
measured in the QMC simulation.

B. Phase diagram

Now we can discuss the results from the QMC simu-
lation of Eq. (1). Starting with the final phase diagram
that schematically summarizes all the data, as shown in
Fig. 1(a), the phase diagram is spanned along the axes of
Nf and J. We set K ¼ t ¼ 1 as the energy unit and choose
the gauge fluctuation strength J as the tuning parameter to
study different Nf cases. For each Nf, there are different
phases and phase transitions, but there are similarities for
all Nf investigated; that is, at small J, Uð1Þ deconfined
phases [Uð1ÞD in Fig. 1(a)] are universally present in the
phase diagram. This finding is highly nontrivial, as we
explain in the Introduction (Sec. I), from both the high-
energy physics and condensed matter physics communities,
the existence of such a deconfined phase in cQED3 is still
under debate due to the lack of controlled calculation at
finite and small Nf [4–15]. Our finding presented here
provides the first set of concrete evidence to support the
existence of this phase.
Moreover, as we further elucidate in later sections, such

a deconfined phase is expected to be the algebraic spin
liquid [6–9,13,14,67], in which critical correlations of
many competing order parameters, such as antiferromag-
netic order, valence-bond-solid order, charge-density wave,
and superconductivity, coexist and share the same power-
law decay due to the Uð1Þ gauge deconfinement and the
subsequential conformally invariant, interacting fixed point
[13,14]. Starting from the algebraic spin liquid phase, one
can easily apply various perturbations and drive the system

into various symmetry-breaking phases. Therefore, the
algebraic spin liquid phase, i.e., Uð1ÞD discovered in this
work, actually serves as the original state of many interest-
ing quantum phases, hence, dubbed the “parent state of
quantum phases.” The discovery of such a deconfined
phase is the most important result of this work.
As J increases, the system goes through deconfined-

confined phase transitions to various symmetry-breaking
phases. In the case of Nf ¼ 2, the symmetry-breaking
phase is the AFM (Néel) phase, whereas in the case of
Nf ¼ 4, the symmetry-breaking phases are the VBS and
AFM phases. In addition, for further increases of Nf, the
symmetry-breaking phases are solely VBS. According to
Ref. [20], the deconfined-confined phase transition could
be a version of the deconfined quantum critical point with
emergent continuous symmetry, and in addition to the
QMC data, we also provide a preliminary field theoretical
description of this transition. The transition from the VBS
to AFM phases inside the confined regime atNf ¼ 4, if it is
indeed continuous as our data suggest, is also a deconfined
quantum critical point [18,42–46,68,69] whose theory is
explained later.
Overall, the presence of the Uð1ÞD deconfined phase and

the phase transitions between the deconfined to confined
phases and within the confined phases, are all intriguing
and show the rich physics behind the simple model
of Eq. (1).
Below, we discuss some exotic aspects of the phases and

phase transitions we obtain.

C. Uð1ÞD phase and confinement transition

1. Nf = 2

First we focus on the case Nf ¼ 2. In the static limit
(J → 0), the gauge fields are frozen into a π-flux pattern per
plaquette [49,70] that results in a Dirac gapless dispersion
relation. At finite J, the gauge fields fluctuate. and pro-
liferation of monopoles of the gauge fields may drive
spinons (the fermions) to confine. On the other hand, at
large values of J, an SUðNfÞ antiferromagnetic effective
low-energy model in the self-adjoint antisymmetric repre-
sentation emerges (see Sec. II B). At Nf ¼ 2, the ground
state of this model is known to host an AFM.
Figure 2(a) shows the AFM correlation ratio rAFM as a

function of J for different system sizes. Figure 2(b) shows
the crossing points of pairs of adjacent system sizes, and a
power-law extrapolation in 1=L gives rise to an estimate of
the confinement transition in the thermodynamic limit:
Jc ¼ 1.6ð2Þ. Since the correlation ratio shows no abrupt
features, the transition from the deconfined phase to the
AFM is more likely to be continuous. This is consistent
with the flux energy per plaquette data presented in Fig. 13
in Appendix D. For the same J values as considered in
Fig. 2, the flux energy per plaquette does not develop a
sharp change of slope.
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The simplest way to detect the deconfinement-
confinement transition may be the Wilson loops, but it
is known that in the presence of matter field, it cannot be
used to detect the topological order of the deconfined
phase (the Uð1ÞD phase); such effects have been dis-
cussed in the literature [71,72]. One suitable way to
demonstrate the deconfinement-confinement transition
here is to show how the photon mass changes over J.
As soon as the matter fields bind to form the particle-hole
condensate, we expect monopoles to proliferate and to
generate a photon mass. The photon mass can be
measured by the correlation of flux quantity θðτÞ [73],
which is defined as θðτÞ ¼ P

□
sin ½curlϕðτÞ�. The photon

mass m is related to the correlation of θðτÞ by
CðτÞ ¼ hθðτ0Þθðτ0 þ τÞi ∼ expð−mτÞ. Figure 3 plots the
estimated photon mass for different system sizes. We find
a signature of an absence of photon mass in the Uð1ÞD
phase and a growth of the photon mass in the AFM phase
as J increases. However, we want to point out that due to
finite-size effects, i.e., uncertainties in extracting the
exponential decay in θðτÞ close to the transition, the
estimation of photon mass near the phase transition is
more qualitative than quantitative.
To further understand the properties of the deconfined

phase, we measure the real-space correlation functions in
the Uð1ÞD phase (at J ¼ 1.25 < Jc). As shown in Fig. 4(a),
the spin-spin correlation shows a power law with the power
2ΔS ¼ 3.1ð4Þ (ΔS is the scaling dimension of spin).
Interestingly, the dimer-dimer correlation function decays
with a similar power law with the power 2ΔD ¼ 2.9ð4Þ (ΔD
is the scaling dimension of the dimer) [Fig. 4(b)]. This
result sheds light on the property of the deconfined phase,
which is proposed in Refs. [7,13] to correspond to the

algebraic spin liquid. It has the unique property that as a
deconfined state emerging from competing orders, the
correlation functions of these competing orders, such as
spin-spin, dimer-dimer, and bond-bond, have the same
power-law decay. If the data in Fig. 4 were deep inside the
confined phase, the decay of spin-spin and dimer-dimer

FIG. 3. Photon massm measured by the flux correlation CðτÞ ¼
hθðτ0Þθðτ0 þ τÞi ∼ expð−mτÞ with θðτÞ ¼ P

□
sin ½curlϕðτÞ�.

Zero photon mass is observed in the Uð1ÞD phase; finite photon
mass is observed in the confined phase. Here we plot the
Nf ¼ 2 case.

(a) (b)

FIG. 2. (a) The antiferromagnetic correlation ratio through the
Uð1ÞD-to-AFM transition at Nf ¼ 2. Here, β ¼ 4L, Δτ ¼ 0.2.
The crossing points are the transition points separating the
deconfined phase and Néel phase. (b) The 1=L extrapolation
of the crossings estimates the Uð1ÞD-to-AFM transition point
Jc ¼ 1.6ð2Þ for Nf ¼ 2.

(a)

(b)

FIG. 4. The log-log plot of real-space decay of (a) spin
correlation functions and (b) dimer correlation functions for
Nf ¼ 2 in the Uð1ÞD phase (at J ¼ 1.25 < Jc). The slope gives a
good estimation of the scaling dimension of spin and dimer. Note
that to avoid even-odd oscillation in the finite-size data, here only
the distance r ¼ odd points are plotted in the Uð1ÞD phase. For
other Nf cases in the following, we adopt the same strategy.
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correlations will be very different. For example, in the Néel
phase, spin-spin will decay to a constant value and dimer-
dimer correlation will decay exponentially. Therefore, our
data in Fig. 4 provide supporting evidence of the algebraic
spin liquid behavior of the Uð1ÞD in Fig. 1 at Nf ¼ 2.

2. Nf = 4

Next we turn to the Nf ¼ 4 case where we also observe a
Uð1ÞD phase at small J. As we show in Fig. 5(a), we can
follow the crossing points of the correlation ratio of the
VBS order parameter for different system sizes so as to
extract [see Fig. 5(b)] Jc1 ¼ 1.2ð3Þ. The data are consistent
with a continuous phase transition from the deconfined
phase to the VBS phase. Furthermore, the flux energy per
plaquette also supports a continuous transition.
Figure 6 depicts the real-space decay of the spin-spin and

dimer-dimer correlation functions in the Uð1ÞD phase for
different system sizes. Again, they show similar power-law
decay, and the power is estimated to be 2ΔS ¼ 3.6ð3Þ for
the spin-spin correlation and 2ΔD ¼ 3.5ð3Þ for the dimer-
dimer correlation. This power law is faster than at Nf ¼ 2

and is hence consistent with the large-Nf prediction
[7,13,14,67].
In addition to the power-law decay of various competing

correlation functions, the situation at Nf ¼ 4 is even more
interesting than that at Nf ¼ 2. As we further increase J,
we observe another phase transition from VBS to AFM.We
discuss this phase transition in detail in Sec. III C 5 of the
main text.

3. Scaling dimension in the Uð1ÞD phase

The Uð1ÞD phase found in the small-J region is expected
to have the same scaling dimension for the spin (ΔS)
and dimer (ΔD) [13]. In fact, according to the large-Nf

perturbative renormalization-group calculation, these cor-
relation functions decay as approximately

r−f4−½64=ð3π2NfÞ�g ð18Þ

with correction atOð1=N2
fÞ [7,13,14,67]. Notice that in our

case, Nf is the number of fermion flavors on the lattice,
while in Refs. [7,13,14,67], Nf is the number of two-
component Dirac fermions, which is twice our Nf due to
momentum valley degeneracy.
We now compare this theoretical expectation to our

numerical simulation results. Figure 7 presents a summary
plot of the power law we obtain at Nf ¼ 2, 4, 6, and 8. The
results for Nf ¼ 6 and Nf ¼ 8 are detailed in Appendix C.
It is remarkable to see that our data perfectly match the
aforementioned 1=Nf perturbative expression.

4. Theory for confinement transition

We find a Uð1ÞD-to-AFM phase transition for the
Nf ¼ 2 case and a Uð1ÞD-to-VBS phase transition for
the Nf ¼ 4, 6, and 8 cases. These phase transitions should
belong to the QED3-Gross-Neveu Oð3Þ or XY transitions
[38] depending on the order parameters in the confined
phases. For example, at least with large enough (but still
finite) Nf when the higher-order fermion interactions are
clearly irrelevant, the transition between the Uð1ÞD to VBS
phase can be described by the following action:

(a) (b)

FIG. 5. The VBS correlation ratio through the Uð1ÞD-to-VBS
transition at Nf ¼ 4. Here, β ¼ 3L, Δτ ¼ 0.2. (b) The 1=L
extrapolation of the crossings estimates the Uð1ÞD-to-VBS
transition point Jc1 ¼ 1.2ð3Þ for Nf ¼ 4.

(a)

(b)

FIG. 6. The log-log plot of real-space decay of (a) spin
correlation functions and (b) dimer correlation functions for
Nf ¼ 4 in the Uð1ÞD phase (at J ¼ 1.00 < Jc). The slope gives
a good estimation of the scaling dimension of the spin and dimer.
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S ¼
Z

d2xdτ
X2Nf

j¼1

ψ̄ jγ · ð∂ − iaÞψ j þ uϕ · ψ̄μψ

þ j∂ϕj2 þ rjϕj2 þ gjϕj4; ð19Þ

where ψ ¼ ðψ1;…;ψ2Nf
ÞT has 2Nf components, and ϕ is

an Oð2Þ vector in which the VBS order parameter is
embedded. μ ¼ ðμx; μyÞ are two 2Nf × 2Nf matrices in
the fermion flavor space. ψ̄μxψ , ψ̄μyψ are two fermion
mass operators that correspond to the VBS in the x and y
directions, respectively. When r > 0, ϕ is gapped out, and
the system is in the Uð1ÞD phase due to the screening of
massless fermions to the gauge field. When r < 0, ϕ
condenses, the fermions are gapped out, then the compact
gauge field is in the confined phase. In the Uð1ÞD phase,
the VBS and antiferromagnetic order parameters should
have the same scaling dimension due to the enlarged
SUð2NfÞ symmetry in the low-energy field theory, con-
sistent with our data in Figs. 4, 6, 10, and 11, while at the
critical point r ¼ 0, these two order parameters still have
power-law correlation functions but with different scaling
dimensions due to the loss of the SU(2Nf) symmetry in the
infrared.

5. AFM-VBS transition at Nf = 4

The situation at Nf ¼ 4 is even more interesting. As we
further increase J, we observe another quantum phase
transition from the VBS to the AFM phase. This transition
is consistently revealed in three steps in Fig. 8.
Figure 8(a) shows the rAFM correlation ratio, and clearly

there is a crossing point signifying the establishment of the
AFM long-range order. The inset shows the 1=L extrapo-
lation of the crossing point and gives rise to Jc2 ¼ 18ð3Þ.

Figure 8(b) is the rVBS correlation ratio, and the crossing
point in it signifies the vanishing of the VBS order. The
inset of Fig. 8(b) gives rise to Jc2 ¼ 19ð5Þ, consistent with
the onset of the AFM order in Fig. 8(a).
The transition from VBS to AFM deserves more

attention; apparently the data in Fig. 8 suggest a continuous
transition, and if it were the case, there is then the
possibility that the critical point will acquire a larger

FIG. 7. Dimension of spin (gren circles) and dimer (blue
squares) in the Uð1ÞD phase as a function of Nf . The dashed
red line corresponds to the 1=Nf perturbative calculation,
1þ η ¼ 4 − ½64=ð3π2NfÞ�, taken from Ref. [7]. Note here Nf
corresponds to the number of four-component Dirac fermions.
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FIG. 8. (a) Antiferromagnetic correlation ratio rAFM for
Nf ¼ 4. Here, β ¼ 3L, Δτ ¼ 0.2. Insets show the 1=L extrapo-
lation of the crossing point in rAFM and Jc2 ¼ 18ð3Þ. (b) VBS
correlation ratio rVBS for Nf ¼ 4. The inset is the 1=L extrapo-
lation of the crossing point in rVBS and Jc2 ¼ 19ð5Þ. This is
consistent with Jc2 obtained from rAFM in (a). (c) AFM-VBS
correlation ratio rAFM-VBS for Nf ¼ 4. The inset is the 1=L
extrapolation of the crossing point in rAFM-VBS and Jc2 ¼ 17ð4Þ.
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symmetry group than that in the model in Eq. (1). In the
case of the Z2 gauge field coupled to the fermion, as shown
in Refs. [18,20], two similar situations with emergent
continuous symmetry are also investigated. In the first
case, it is at Nf ¼ 3 that a continuous VBS-to-AFM phase
transition occurs [18], and in the second case, it is the
deconfinement-confinement phase transition itself at
Nf ¼ 2 [20]. Our phase transition at Jc2 is closer to the
former. To further understand the nature of the transition
from VBS to AFM, we plot the ratio of the AFM structure
factor and VBS structure factor,

rAFM-VBS ¼
χSðXÞ
χDðMÞ : ð20Þ

The results are shown in Fig. 8(c). Indeed, there is a
crossing point in the rAFM-VBS, and the 1=L extrapolation
in the inset of Fig. 8(c) gives rise to Jc2 ¼ 17ð4Þ, very
consistent with the Jc2 obtained from the crossings of rAFM
in Fig. 8(a) and rVBS in Fig. 8(b). This transition is similar
to the AFM-to-VBS transition in the SU(4) J-Q model [74],
where a continuous transition is observed. The transition
in that case can be described by a noncompact CPN−1

description with N ¼ 4 [75], and it is shown that the
monopoles are irrelevant at this fixed point [76]. Therefore,
a deconfined quantum critical point [42] is realized.
However, in Ref. [75], on sublattice A of the lattice, there
is a fundamental representation of SU(4), while on sub-
lattice B, there is an antifundamental representation, which
is different from our case.
In our case, with Nf ¼ 4 there is effectively a self-

conjugate representation of the SU(4) group on every site;
thus, the field theory for the AFM-to-VBS transition is
different from Ref. [75]. According to Ref. [47], the AFM
Néel order in this case has the following Grassmannian
ground-state manifold M:

M ¼ Uð4Þ
Uð2Þ × Uð2Þ : ð21Þ

To describe this antiferromagnetic state, one can either
introduce Nf ¼ 4 flavors of fermionic spinons with half-
filling, or introduce two color species of bosonic spinons
zα;a (α ¼ 1;…; 4, a ¼ 1, 2), and couple them to a Uð2Þ
gauge field [to describe the simplest Néel order of SU(2)
spins, we need only one two component of bosonic
spinon coupled with a Uð2Þ gauge field, as in
Ref. [42] ]. The Uð2Þ gauge constraint will guarantee
that on every site there are fixed numbers of spinons, and
the color space is fully antisymmetric; thus, on every site,
the SU(4) spin is automatically in an antisymmetric self-
conjugate representation. Then, the field theory for the
Néel-VBS transition is

S¼
Z

d2xdτ

����
�
∂− ia− i

X
l¼1���3

alτl
�
z

����
2

þrjzj2þ���; ð22Þ

where aμ and alμ are gauge fields corresponding to the
Uð1Þ and SU(2) subgroups of Uð2Þ. Note that these gauge
fields are “emergent” gauge fields, which are different
from the explicit gauge field in our original simulation.
When r < 0, zα;a condenses and leads to the antiferro-

magnetic state with ground-state manifold f½Uð4Þ�=½Uð2Þ×
Uð2Þ�g. When r > 0, zα;a is gapped out, and the gauge
fields will be confined. Here we assume that the Uð1Þ
compact gauge field aμ still has the quadrumonopole
proliferation, which leads to the VBS phase like the original
deconfined QCP theory for the SU(2) spins [42].
One of the crucial properties of the deconfined QCP is

the “intertwinement” between order parameters on two
sides of the transition, which can be captured by a
topological term which treats the Néel and VBS order
parameters on equal footing [77]. In the current case with
SU(4) spin symmetry, one can also introduce a topological
term that captures the intertwinement between the SU(4)
Néel and VBS orders with a topological term. To do this,
we need to embed both the Néel and VBS order parameters
into a larger manifold. One way to parametrize the Néel
order manifold isN ¼ U†ΩU, where Ω is a 4 × 4 diagonal
matrix Ω ¼ diagð12×2;−12×2Þ, and U is an SU(4) matrix.
N is a 4 × 4 Hermitian matrix with constraint N 2 ¼ 1.
Now we introduce a larger 8 × 8 matrix P which

includes both the Néel and VBS order parameters:

P ¼ cosðθÞN ⊗ τz þ sinðθÞ14×4 ⊗ ðVxτ
x þ Vyτ

yÞ; ð23Þ

where ðVx; VyÞ is a two-component order parameter for the
VBS phase, and V2

x þ V2
y ¼ 1. The order parameter P

unifies the SU(4) Néel and VBS order parameters, just like
the Oð5Þ vector order parameter introduced in Ref. [77].
The topological term that captures the intertwinement

between Néel and VBS order parameters is a Wess-
Zumino-Witten (WZW) term:

SWZW ∼
Z

d2xdτ
Z

1

0

du ϵμνρσtr½P∂μP∂νP∂ρP∂σP�: ð24Þ

Using the same technique in Ref. [78], one can show that at
the vortex core of the VBS order parameter, there is a
spinon with self-conjugate representation, which is con-
sistent with intuition. In fact, the Oð5Þ WZW term
introduced in Ref. [77] can be written in the same form
as Eq. (24), as long as we replace P in Eq. (24) by a 4 × 4
Hermitian matrix order parameter P ¼ n · Γ, where Γ are
five Gamma matrices, and n is the Oð5Þ vector introduced
in Ref. [77].
This topological term can be viewed as the low-energy

effective field theory of the π-flux state of the SU(4)

XU, QI, ZHANG, ASSAAD, XU, and MENG PHYS. REV. X 9, 021022 (2019)

021022-10



antiferromagnet, which again is described by a QED3 with
eight flavors of Dirac fermions [13], but again the gauge
field of this QED3 is an emergent gauge field which is
different from the gauge field introduced in the original
model that we simulate. The WZW term Eq. (24) can be
derived by coupling the 8 × 8 matrix order parameter P to
the eight flavors of Dirac fermions of the π-flux state and
integrate out the fermions following the standard procedure
of Ref. [79].
Our data, the crossing of rAFM-VBS in Fig. 8(c), suggest

that the AFM and VBS order parameters have the same
scaling dimension at this transition, which is consistent
with the emergent SU(8) symmetry of the π-flux state of the
SU(4) antiferromagnet. The large SU(8) symmetry, if it
indeed exists at the AFM-VBS transition, will ensure that
many other order parameters have the same scaling
dimension as the AFM and VBS order parameters [13].
These order parameters will also have similar fractionali-
zation dynamical signatures in their spectral functions as
the AFM and VBS order parameters.

IV. CONCLUSIONS

Using large-scale DQMC, we investigate the compact
Uð1Þ gauge field theory coupled to Dirac fermion matter
fields in ð2þ 1ÞD and variable flavor number Nf, i.e.,
cQED3. With our simulations, we map out the entire
ground-state phase diagram in the flavor Nf and gauge
field fluctuation J strength plane. Our results are summa-
rized in Fig. 1(a).
Most importantly, signatures supporting stable Uð1ÞD

phases are discovered at Nf ¼ 8 and 6, and evidence of the
Uð1ÞD phase at Nf ¼ 4 and 2 is also found. The properties
of the deconfined phase are consistent with the proposal of
algebraic spin liquid, in which various competing orders
(AFM order and VBS order, for example) all have algebraic
correlation with identical power laws in real space. The
decay power is found to quantitatively converge to the
large-Nf predictions [7,13,14,67].
The transition between the deconfined and confined

phases at various Nf are determined using the RG-
invariant correlation ratios. At Nf ¼ 2, the transition
occurs between the Uð1ÞD and AFM phases. Since the
AFM corresponds to Oð3Þ symmetry breaking, the critical
theory should be described by the QED3-Gross-Neveu
Oð3Þ universality class. In contrast, at larger values of Nf

the ordered phases correspond to VBS. The dynamical
generation of the two VBS mass terms is described by the
QED3-Gross-Neveu Oð2Þ universality class. As far as we
know, the QED3-Gross-Neveu Oð2Þ or Oð3Þ transition
have not been investigated numerically before in an
unbiased simulation. It is certainly worthwhile to carefully
study the critical properties of these transitions via QMC
simulations further and compare with future analytical

calculations. In particular, the QED3-Gross-Neveu Ising
transition has been investigated recently with perturbative
RG calculations [38,39].
Aside from the QED3-Gross-Neveu transitions, we find

evidence for a direct and continuous transition between
the AFM and VBS states in the confined region of the
phase diagram at Nf ¼ 4. Since we have on average two
fermions per site, we should consider the antisymmetric
self-conjugate representation of the SU(4) group. We
present various theoretical descriptions of this putative
deconfined quantum phase transition in terms of multi-
flavored spinons coupled to emergent Uð1Þ and SU(2)
gauge fields. We also discuss the effective low-energy field
theory with a topological term that captures the intertwine-
ment between the magnetic and VBS orders and its
connection to the π-flux state of the SU(4) spin system
discussed in Ref. [13]. Numerical support for emergent
symmetries is provided. In the future, measurements of the
conserved current operators related with such emergent
continuous symmetries [80] can be performed.
Finally, the confining phase transitions in our model, as

well as the possible deconfined quantum critical point at
Nf ¼ 4, will have distinct and very interesting dynamical
properties in their spectral functions that can be further
explored in QMC simulations. Such calculations provide
experimentally accessible signatures of exotic states of
matter where emergent gauge fields, fractionalized exci-
tations, can be traced. Similar attempts have recently been
applied to the deconfined quantum critical point in the
pure spin model [69], emergent Z2 spin liquid at ð2þ 1ÞD
[81], and Uð1Þ spin liquid at ð3þ 1ÞD [82] and the Z2

counterpart of our model [18]. In the present cQED3

model, dynamical measurements in the QMC simulation
plus state-of-the-art analytical continuation [81,83,84] can
help reveal more fundamental physical understanding of
these exotic quantum phase transitions.
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APPENDIX A: CONNECTION TO HIGH-ENERGY
LATTICE cQED3 ACTION

As we discuss in the Sec. II A, after the path integral of
the rotor degrees of freedom in a rotor model with a fermion
in Eq. (1), the action of cQED3 coupled to fermionic matter
is obtained explicitly. In the high-energy lattice cQED3

action, the Lagrangian for the pure gauge field part takes
the form

Lϕ¼Kτ

X
hiji

fcos½ϕijðτþ1Þ−ϕijðτÞ�gþKr

X
□

cosðcurlϕÞ;

ðA1Þ

where Kτ < 0 and Kr < 0 with jKτj ¼ jKrj. Compared
with the Lagrangian defined in Eq. (3), we study the case
Kτ < 0 and Kr > 0 with jKτj ≠ jKrj. As we can always
rescale space and time to restore the Lorentz symmetry, the
difference between jKτj ¼ jKrj and jKτ ≠ jKrj is trivial.
Actually, our model can be exactly mapped to the case of
Kr < 0 and the fermion hopping with a staggered phase
factor as follows:

ϕi;iþx̂ → ϕi;iþx̂ þmyðiÞπ; ðA2Þ

where myðiÞ is 1 (0) if the y coordinate of i is odd (even),
respectively. Therefore, our convention is equivalent to the
high-energy lattice cQED3 action.
As we mention in the main text, the Dirac fermion in our

model is realized because the Kr term prefers π flux
through each plaquette, and the π flux doubles the unit
cell. Following the standard literature such as Ref. [13], if
we start with Nf flavors of one-component fermions on the
lattice [like Eq. (1)], at low energy there will be 2Nf flavors
of two-component Dirac fermions.

APPENDIX B: PSEUDOUNITARY GROUP
SUðn;mÞ AND THE ABSENCE
OF THE SIGN PROBLEM

As we discuss in the main text, the fermion determinant
for one flavor is detðInþm þQLτ

z¼1 BzÞ, where n and m are
the numbers of sites in the two sublattices, and Inþm

denotes the (nþm)-dimensional identity matrix. Bz ¼ ehz ,
where hz has the following structure,

hz ¼
�
0n Tz

T†
z 0m

�
; ðB1Þ

and Tz is the hopping matrix between different sublattices.
Bz matrices satisfy (1) B†

zηBz ¼ η, where η ¼
diagðIn;−ImÞ, and (2) detBz ¼ 1; thus, their products
generate the pseudounitary group SUðn;mÞ.
Theorem 1.—For any D ∈ SUðn;mÞ,

detðInþm þDÞ ∈ R.
Proof.—First, suppose that λ is an eigenvalue of D,

Dv ¼ λv, then D†ηv ¼ λ−1ηv, and DTηv� ¼ ðλ�Þ−1ηv�;
hence, ðλ�Þ−1 is an eigenvalue of DT and is thus also an
eigenvalue of D.
Denote the eigenvalues of D by λi, 1 ≤ i ≤ nþm, then

detðInþm þDÞ ¼ Q
ið1þ λiÞ. We then treat the eigenval-

ues on the unit circle and those not on the unit circle
separately. For those not on the unit circle,

Y
i;jλij≠1

ð1þλiÞ¼
Y

i;jλij<1
ð1þλiÞ½1þðλ�i Þ−1�¼

Y
i;jλij<1

j1þλij2
λ�i

:

ðB2Þ

For those on the unit circle, denoting λi ¼ eiθi ,
−π < θi ≤ π, we have

Y
i;jλij¼1

ð1þ λiÞ ¼
Y

i;jλij¼1

2 cosðθi=2Þeiθi=2: ðB3Þ

Therefore, we find

½detðInþm þDÞ�2 ¼ j detðInþm þDÞj2
Y
i

λi
jλij

¼ j detðInþm þDÞj2 > 0; ðB4Þ

hence, detðInþm þDÞ ∈ R.
This theorem implies that for an even number of flavor

fermions, the model is free of the sign problem for any
hopping matrices Tz. For instance, this is true for both
Abelian and non-Abelian gauge fields.
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It is easy to find an example

D ¼
�
−

ffiffiffi
2

p
1

1 −
ffiffiffi
2

p
�

∈ SUðn;mÞ ðB5Þ

such that detðI þDÞ < 0. Therefore, the absence of the
sign problem does not hold for an odd number of fermions
in general. However, it does hold for models with fermions
coupled to Z2 gauge fields [18–20].

APPENDIX C: CONFINEMENT TRANSITION
FOR Nf = 6 AND Nf = 8

In this Appendix we discuss the results for Nf ¼ 6

and Nf ¼ 8.
As shown in Figs. 9 and 12 and the corresponding insets,

we estimate Jc ¼ 1.9ð3Þ for Nf ¼ 6 and Jc ¼ 2.5ð1Þ for
Nf ¼ 8. Again, the data are consistent with a continuous
transition between the deconfined UID and confined
VBS phases. Correspondingly, the flux energy per pla-
quette behaves as a smooth function across the criti-
cal point.
More interestingly, we plot the spin-spin and dimer-

dimer correlation functions in real space for Nf ¼ 6 at
J ¼ 1.4 in Fig. 10 and for Nf ¼ 8 at J ¼ 2.0 in Fig. 11,
respectively. In Fig. 10, the spin-spin and dimer-dimer
correlation functions show the similar power-law decay
with 2ΔS ¼ 3.8ð2Þ and 2ΔD ¼ 3.6ð3Þ. In Fig. 11, both
correlation functions decay with similar power, with
2ΔS ¼ 3.8ð2Þ and 2ΔD ¼ 3.4ð5Þ. On the whole, our data
provide concrete evidence that the deconfined phase in our
model at various values of Nf belong to the algebraic spin

liquid [7,13,14,67]. One can foresee that with a further
increase of Nf, we will reach the expected power-law
behavior of approximately r−4.

(a) (b)

FIG. 9. The VBS correlation ratio through the Uð1ÞD-to-VBS
transition at Nf ¼ 6. Here, β ¼ 2L, Δτ ¼ 0.1. (b) The 1=L
extrapolation of the crossings estimates the Uð1ÞD-to-VBS
transition point at Jc ¼ 1.9ð3Þ for Nf ¼ 6.

(a)

(b)

FIG. 10. The log-log plot of real-space decay of (a) spin
correlation functions and (b) dimer correlation functions for
Nf ¼ 6 in the Uð1ÞD phase (at J ¼ 1.40 < Jc). The slope gives a
good estimation of the scaling dimension of the spin and dimer.

(a)

(b)

FIG. 11. The log-log plot of real-space decay of (a) spin
correlation functions and (b) dimer correlation functions for
Nf ¼ 8 in the Uð1ÞD phase (at J ¼ 2.00 < Jc). The slope gives a
good estimation of the scaling dimension of the spin and dimer.
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APPENDIX D: FLUX ENERGY PER PLAQUETTE

To characterize the continuous nature of confined and
deconfined phase transition, we also measure the flux
energy per plaquette hð1=L2ÞP

□
cos ðcurlθ̂Þi. Figure 13

depicts our result atNf ¼ 2. For otherNf’s, the flux energy
per plaquette has a similar continuous behavior.

APPENDIX E: DYNAMICALLY GENERATED
CONSTRAINT

As we mention in the main text, our model corresponds
to an unconstrained gauge theory. As such, the Gauss law
will be dynamically imposed, and Q̂i defined in Eq. (6)
should converge to constant value in the zero-temperature

limit. We study the uniform structure factor of Q̂i by
calculating

CQ ¼ 1

L2

X
ij

hQ̂iQ̂ji: ðE1Þ

We find that the uniform structure factor of Q̂i defined
above extrapolates to zero in the thermodynamic limit as
shown in Fig. 14 for Nf ¼ 2. Other Nf cases show similar
behavior.

APPENDIX F: PERFORMANCE OF DQMC ON
cQED3 COUPLED TO FERMIONIC MATTER

As we discuss in the main text, in the DQMC simu-
lation, we use local updates which flip the gauge variables
ϕbðτÞ [∈ ½0; 2πÞ] on the space-time lattice one by one, and
we call one scan of the whole space-time lattice as one
sweep, which is usually called one Monte Carlo step in
DQMC. For the cQED3 problem, we design a specific fast
update method, which greatly improves the computation
efficiency more accurately by making the fast update
still work here, thus reducing the huge time cost for
each sweep.
As a first attempt to study this challenging problem of

cQED3 coupled to fermionic matter in the condensed
matter field by the DQMC method with the local update
strategy, we need to demonstrate how well it works here.
The following is a detailed discussion of the performance of
the method.
The first important quantity associated with the effi-

ciency of the method is the acceptance ratio. Figure 15
illustrates the acceptance ratio for different J at Nf ¼ 2.
The acceptance ratio reduces as J becomes smaller.
Fortunately, the acceptance ratio deep in the Uð1ÞD phase

FIG. 12. The VBS correlation ratio through the Uð1ÞD-to-VBS
transition at Nf ¼ 8. Here, β ¼ 2L, Δτ ¼ 0.1. (b) The 1=L
extrapolation of the crossings estimates the Uð1ÞD-to-VBS
transition point at Jc ¼ 2.5ð1Þ for Nf ¼ 8.
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FIG. 13. Flux energy per plaquette along the same J path. There
is no singularity around Jc, suggesting it is a continuous phase
transition.
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factor extrapolated to zero in thermodynamic limit. Thus, the
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is still quite large; e.g., at J ¼ 0.75 < Jc ¼ 1.6ð2Þ, the
acceptance ratio is approximately 10%.
The second important quantity which reflects the effi-

ciency of our method to the specific problem we study is
how quickly does the net flux change in each time plane
with Monte Carlo steps? Flux in each plaquette can be
written as

P
b∈□ ϕb ¼ Φ□ þ 2πm□ with Φ□ ∈ ½0; 2πÞ and

m□ an integer. The net flux in one time-slice planeMðτÞ is

defined as the sum ofm□ of each plaquette in the time-slice
plane τ,MðτÞ ¼ P

□
m□ðτÞ. Figure 16 shows such net flux

sweep series both inside the Uð1ÞD phase [Fig. 16(a)] and
inside the AFM phase [Fig. 16(b)] at Nf ¼ 2 with L ¼ 12

at different time slices τ and τ0. In the Uð1ÞD phase, it
favors the πð−πÞ flux in each plaquette, and the net flux in
each time-slice plane seldom changes and is weakly
fluctuating between different time slices, while in the
AFM phase, the net flux changes almost randomly with
more extended values and large fluctuations between
different time-slice planes, as a consequence of a proliferate
of monopoles.
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