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Abstract

According to transmission cross-coefficient theory, the information limit of non-linear

imaging in high-resolution transmission electron microscopy is, under certain conditions,

far beyond that of linear imaging, which suggests the possibility of using high-frequency

information for structural determination. In this article, we studied the information beyond

the linear information limit by means of multislice method simulation, with AlN as an

example, and more structural information was obtained by using part of the high-

frequency information.
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Introduction

High-resolution transmission electron microscopy (HRTEM)
is a powerful technique to investigate crystal structures. A
widely used performance criterion in HRTEM is the infor-
mation limit of the electron microscope, which is defined as
the inverse of the highest spatial frequency that can be trans-
ferred by the imaging system from the exit plane to the
image plane. It is important, however, that this one-to-one
relationship between the information limit and attainable
resolution applies only in the case of linear imaging with neg-
ligible non-linear interference, which means that specimens
must be very thin, i.e. weak-phase objects.

The contrast transfer function (CTF) of electron
microscopes was thoroughly investigated through trans-
mission cross-coefficient (TCC) theory by K. Ishizuka in

1980 [1], and he found the information limits for linear
and non-linear interferences to be different. More inter-
esting are the experiments with Young’s fringes carried
out by J. Barthel and A. Thust, in which the highest
detected frequencies in diffractograms was found to
extend even beyond the highest transfer frequency of the
inserted objective aperture [2], indicating that the infor-
mation limit of traditional linear imaging is not enough
to explain information transfer by optical systems,
because significant non-linear information is present in
the higher frequencies of the diffractogram [3,4]. Later,
S. Van Aert et al. [5] derived the closed analytical forms
of the information limit for linear and non-linear infor-
mation through channeling theory, assuming zero spher-
ical aberration. Their results show that the information
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limit for the non-linear component may be √2 times lar-
ger than the information limit for the linear one.

Since there is much space between the non-linear struc-
tural information limit and the linear information limit, a
question comes up: whether the non-linear information
can be used to determine structure. In the present work,
the non-linear imaging component was investigated based
on multislice simulation of wurtzite-structure AlN as an
example. Results show that in some special cases, the
phases of some high-frequency non-linear information may
give a good indication of the phases of structure factors,
which can be used to deduce the structure.

Information limit of linear and non-linear

components

First, we briefly introduce TCC theory and demonstrate
the difference between the information limits of linear and
non-linear imaging components. More details can be found
in Refs. [1,6–8].

According to TCC theory, the Fourier transform of the
image intensity, i.e. the diffractogram, will be
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in which ‘
→
K ’ represents the two dimensional vector in

reciprocal space, ‘*’ represents the conjugate form, ( ′
→

)Q K
is the diffracted wave, and (

→
)O K is the Fourier transform

of the object function, ( ′
→

′
⎯→⎯

−
→

)T K K K, is the transmission
cross coefficient, a complex function that depends on the
temporal and spatial coherence of the microscope as well
as the spherical aberration Cs and, the defocus of the
objective lens, etc.
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Here, (
→

= )I K 00 represents the transmitted electron
beam, (

→
≠ )I K 01 represents the linear interference between

the transmitted beam and one of the diffracted electron

beams, and (
→

≠ )I K 02 represents the non-linear interfer-
ence between two diffracted beams, ′

⎯→⎯
K and ′

⎯→⎯
−

→
K K .

To get the analytical expression of (
→

≠ )I K 01 and
(
→

≠ )I K 0 ,2 an object function (
→

)O K based on the pseudo-
weak-phase object approximation (PWPOA) was input
into Eqs. (3)–(4) [8]. Then
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where δE , δEx and αE , αEx represent the damping envelopes
of the temporal and spatial coherences, respectively; (

→
)F K

represents the crystal structure factor; Δfeff is the effective
focus and χ (

→
)Keff is the effective CTF [8]; and
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where λ, n and Δz represent the electron wavelength, num-
ber of slices and slice thickness of the crystal, respectively.

From Eqs. (4), (6) and (7), it can be found that I2 is
summation of the non-linear interferences between vari-
ous ‘couples’ of diffractions, i.e. ( ′

→
)F Kx and ( ′

→
−

→
)F K Kx

for different ′
⎯ →⎯⎯
Kx, and the weight of each non-linear inter-

ference depends on the imaging parameters and crystal
thickness.

From Eqs. (5) and (6) the linear and non-linear damp-
ing envelopes due to temporal coherence of the electron
source can be respectively expressed as [8]
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where ‘D’ represents the focus spread and the super-
script ‘l’ means the linear information. The reciprocal
spatial frequency

→
K for (

→
) =δ

−E K el 2 is used to define the
conventional information limit and will be referred to as
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‘the linear information limit’ in the following. When the
non-linear components are concerned, the damping envel-
opes due to temporal coherence ( ′

⎯→⎯
′

⎯→⎯
−

→
)δE K K K, (see

Eq. (9)) obviously differ from (
→

)δE Kl , especially for high
reciprocal spatial frequencies, just as shown in Fig. 1. That
is, the information limit for non-linear information,
referred to as ‘non-linear information limit,’ differs from
the linear information limit.

The difference between ( ′
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′
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and ( )δE Kl  is
easy to understand. According from Eq. (9), when
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) =δE K K K, 1. This means the temporal coher-

ence envelope takes its maximum value of unity along the
perpendicular bisector of K


, as shown in Fig. 2, a phenom-

enon called the ‘achromatic condition’ [1] because the chro-
matic aberration effect disappears at this point.

Simply put, non-linear information limit is higher than
the linear one, and the difference between them is due
mainly to the achromatic condition for non-linear interfer-
ence; thus the non-linear terms carry higher-resolution
information. In the next section, wurtzite-structured AlN is
taken as an example for the study of the non-linear compo-
nent, and the possibility of using the non-linear component
for determining structure is studied.

Application of the non-linear component

A schematic diagram of an AlN [100] diffractogram is
shown in Fig. 3. As illustrated before, (

→
)I K1 is negligible at

sufficiently high frequencies because of the strong damping
of δEl ,; thus it is more appropriate to investigate the impact
of (

→
)I K2 at high frequencies. Here, reflection 012, which

lies just within the linear information limit (indicated by
the dashed circle in Fig. 3), and reflection 013, which lies
just beyond the linear information limit, are chosen as
examples in our investigation. Moreover, as illustrated by
X.D. Zou et al. [9], good phases are more important than
amplitudes for determining atomic column positions, so in
the following, the phase of the reflections 012 and 013 will
be studied by means of dynamic simulation with varied
imaging conditions and varied thickness.

The simulations of AlN HRTEM images are carried out
along the [100] direction. In this direction, the Al and N
atoms do not overlap, and the atomic distance between
adjacent Al and N atoms is about 1.09 Å. The slice thick-
ness (Δz) of AlN in the [100] direction is 3.11 Å; the radius
of the objective aperture is set as 2 Å−1. Imaging parameters
with different effective defocus values around the Scherzer
focus, as shown in Table 1, are chosen for simulations.
Actually, these imaging parameters correspond to a

Fig. 1. Temporal envelopes for (a) linear, (b) non-linear imaging components with D nm= 7 and (c) linear,

(d) non-linear imaging components withD nm= 2.5 of microscope with E kV= 200 , respectively. Only one

quadrant of ′
→

′
⎯→⎯

−


K K K( , ) space is shown.
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JEOL-2010 microscope, which is equipped with a LaB6 fila-
ment and has a linear information limit 0.6Å−1 (i.e. about
1.6Å). Phases of reflections in the diffractogram were obtained
from the Fourier transforms of the simulated images, and
the phases of the non-linear component were obtained by
separating the linear and non-linear components [8].

Figure 4(a) shows the variation of α { ( )} −I 012im

α { ( )}F 012 , the phase difference between reflection 012 in
the diffractogram and the corresponding structure factor,
over crystal thickness under different effective defocus

values Δfeff. When the crystal is thin, it varies with the sign

of χ( ( ))Ksin eff


for =K 012


as indicated in Eq. (5) (note

that ( )S K


for =K 012


remains positive throughout our
simulation range (n ≤ 31), according to Eq. (7)),
because (

→
)I K2 is negligible, as shown in Fig. 4(e), and
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| ( ) |
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2

1
, meaning that ( ) ≈ ( )I K I Kim 1

 
. With the

crystal getting thicker, α α{ ( )} − { ( )}I F012 012im becomes
independent of defocus when AlN thickness is above
4.67 nm (15 slices), because { ( )}I 0122 becomes dominant

in { ( )}I 012im ; i.e. ( )( | ( ) |
| ( ) |

ln I
I

012
012

2

1
becomes positive as shown

in Fig. 4(e)). More interesting is that α { ( )}I 012im , i.e.
α { ( )}I 0122 , becomes approximately constant, and is
almost equal to α { ( )}F 012 ,; as shown by Fig. 4(c),
α α{ ( )} − { ( )}I F012 0122 .

Similar to reflection 012, α α{ ( )} − { ( )}I F013 013im

varies with the sign of χ( (
→

))Ksin eff when the crystal is thin,
as shown in Fig. 4(b), and remains constant with the crys-
tal getting thicker. Furthermore, because reflection 013 is
beyond the linear information limit while 012 is not,
α { ( )}I 0132 becomes dominant more quickly, as shown
Fig. 4(e) and (f); thus α α{ ( )} − { ( )}I F013 013im approaches
a constant value more quickly than does α { ( )} −I 012im

α { ( )}F 012 , as shown in Fig. 4(b). For α { ( )} −I 013im

α { ( )}F 013 remains constant and is not far from zero when
sample thickness is above 1.55 nm, indicating that
α { ( )}I 0132 , i.e. α { ( )}I 013im , may reflect the structure fac-
tor to some extent (see Fig. 4(d)). In the following we use
the phase of ( )I 013im , which is beyond the information lim-
it, to try to recognize the species of Al and N.

Simulated images of AlN in the [100] zone axis with
different thicknesses under Δ = −f 41nmeff are shown in
Fig. 5(b)–(f). Just like the image deconvolution [10], the
phase of the artificial structure factor α { ′(

→
)}F K can be set

equal to α π{ (
→

)} −I Kim , i.e. α π{ (
→

)} −I K1 , for reflections
010, 002, 011, and α { ′( )}F 012 is set to be α { ( )}I 012im

according to their CTF values, and α { ′( )}F 013 is set to be
α { ( )}I 013im because α α{ ( ) ≈ { ( )}}I F013 013im ; then we
can get α { ′(

→
)}F K from

→
=K 010 to

→
=K 013 from the dif-

fractogram of the simulated image. With the amplitudes of
(
→

)I Kim retained, artificial potential maps can be obtained
with atomic columns appearing as black dots by convert-
ing all α { (

→
)}I Kim into α π{ ′(

→
)} +F K , as shown in Fig. 5

(h)–(l), corresponding to Fig. 5(b)–(f), respectively. As
shown by Fig. 5(m)–(r), the intensity profiles correspond-
ing respectively to the framed areas in Fig. 5(g)–(l), the ‘Al’
and ‘N’ atomic columns can be separated in the ‘Al-N’

dumbbell when the crystal thickness is above 4 nm. This
means that the application of ( )I 013im does help us get
structure details with resolution better than the linear
information limit for the simulated linear information limit
is about 1.6 Å, not enough to separate the dumbbell.

Fig. 2. Diagram of achromatic condition for ′
⎯→⎯

′
⎯→⎯

−
→

δE K K K( , ). The dashed

line represents the perpendicular bisector of vector
→
K .

Fig. 3. Schematic of AlN [100] diffractogram. The dotted circle indicates

the frequency of 0.6 Å−1.

Table 1. Imaging parameters used for simulation. The effective defocus value ranges from −31 to −51 nm with 2 nm steps

E (kV) α (mrad) CS (mm) Defocus spread (nm) Scherzer focus (nm) Δfeff (nm) Linear information limit (Å−1)

200 0.5 0.5 7 −41 −31:−2:−51 0.6
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In addition, note that ‘N’ columns are lighter than ‘Al’ col-
umns in the resulting maps shown in Fig. 5(j), but become
darker than ‘Al’ in Fig. 5(k) and (l). This phenomenon, i.e.

light atomic columns appearing with lower contrast than
heavy ones in thin samples may appear darker when sample
thickness is above a critical value, accords with the image

Fig. 4. Variation of phase differences over crystal thickness for different effective focus values

Δfeff . (a) α α−I F{ (012)} { (012)}im , (b) α α−I F{ (013)} { (013)}im , (c) α α−I F{ (012)} { (012)}2 ,

(d) α α−I F{ (013)} { (013)}2 , (e) ( )ln
I

I

| 2(012)|

| 1(012)|
and (f) ( )ln

I

I

| 2(013)|

| 1(013)|
. “n” represents the number of

slices, and slice thickness Δz = 3.11 Å .

Fig. 5. (a) and (g) Projected potential maps of AlN [100] with atoms shown as black dots; (b)–(f) simu-

lated images of AlN [100] with different thicknesses under Δ −f nm= 41eff (other imaging parameters

are the same as shown in Table 2); (h)–(l) resulted maps corresponding to (b)–(f) by converting

α


I K{ ( )}im to α


F K{ ( )}, respectively; solid arrows in (k) and (l) indicate extra bright contrasts that do

not correspond to atomic columns. (m)–(r) Intensity profiles of the framed areas in (g)–(l), respectively,

along the direction indicated by dotted arrows.
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contrast variation illustrated in PWPOA [11], and can help
us in atomic species recognition [12,13]. Besides, some
extra areas of contrast, indicated by arrows, do not corres-
pond to atomic columns but arise from strong non-linear
information when the sample is thick [8].

Moreover, note that the distance between the Al and N
atoms in the reconstructed map shown in Fig. 5 is not
exactly same as that in the potential map, and similarly,
the contrast in the reconstructed map is not linear with the
atomic number, which is due to two reasons: first, the
highest-frequency reflection used in the reconstruction, 013
(which has the reciprocal spatial frequency of 0.708 Å−1),
is not enough to separate the dumbbell with the Al-N inter-
atomic distance 1.09 Å; second, the amplitudes and phases
of the reflections in the diffractogram we used are not
exactly equal to those of the corresponding structure fac-
tors. Even so, with the help of PWPOA and the nonlinear
contribution, more structural information can be obtained.

Briefly, if we know the examined crystal structure, like
in the previously shown example of AlN, we can directly
determine whether the phase of high-frequency reflections
accords with the phase of the structure factor, in an appro-
priate range of defocus and sample thickness. If the answer
is positive, α { (

→
)}I K2 may be used for structural determin-

ation, for instance, determination of polarity here; thus
more structural information can be obtained.

Discussion

So far, the origin of this phenomenon, i.e. α { (
→

)} ≈I K2

α { (
→

)}F K in AlN when the crystal is not thin, is still not
clear. Here, we try to understand it by means of Cochran’s
equation [14],
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)F Kx and
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)F K Kx may accord with a special relation in some
cases, e.g. in certain projections of a crystal with simple
structure or a protein crystal [14].
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Then, according to Cochran’s equation (see Eq. (10))
and the simplified (

→
)I K2 (see Eq. (13)), and considering

that Ax is a non-negative value, the phase of (
→

)I K2 can
reflect the phase of (

→
)F K , i.e.

α α{ (
→

)} ≈ { (
→

)} ( )I K F K . 152

Nevertheless, it should be pointed out that α { (
→

)} ≈I K2

α { (
→

)}F K can be found, up to now, only for non-aberration-
corrected TEM imaging, because the non-linear component
is the summation of the non-linear interferences between
various ‘couples’ of reflections, and things that are simpler
for the non-aberration-corrected imaging of few reflections
should be taken into consideration, as will be elucidated in
the following.

Figure 6 shows the variations of ( ′
→

′
→

−
→

)δE K K K,
( ′
→

′
→

−
→

)αE K K K, for
→

=K 012 and 013 as a function of ′
⎯→⎯
K ,

with Fig. 6(a) and (c) showing the non-aberration-
corrected imaging case and Fig. 6(b) and (d) showing the
aberration-corrected imaging case. As for our simulation in
this work (refer to Fig. 6(a) and (c)), considering that 001
and 003 are distinction reflections and the linear informa-
tion limit is 0.6 Å−1 (which can be considered as a virtual
aperture), Eq. (13) can be rewritten as

( ) ≈ × { ( ) ( )} ( )I A F F012 2 010 002 16x2

and

( ) ≈ × { ( ) ( )} ( )I A F F013 2 011 002 17x2

for reflections 012 and 013 in AlN, respectively. Therefore,
it is clear that only when ′

→
K is adjacent to the perpendicu-

lar bisector of
→
K , should the non-linear interferences

between beams ′
→
K and ′

→
−

→
K K be taken into consideration,
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which accords well with the approximation of the quasi-
achromatic condition [6].

Comparing Fig. 6(a) and (b) or (c) and (d), it can be
found that any decrease of the imaging parameters CS, α
and D, will contribute more non-linear interference for a
specific reflection. In this case, therefore, the phase of (

→
)I K2

does not have a simple relation with the phase of (
→

)F K , so
it is hard for us to make use of it.

Briefly, the phase of the non-linear information of
reflection 013 for AlN is found to be close to the phase of
the structural factor under the non-aberration-corrected
condition, so the non-linear information can be used dir-
ectly in determining structure, and here the polarity of AlN
was determined. Nevertheless, more work needs to be
done to understand this phenomenon deeply.

Concluding remarks

The linear information limit and the non-linear informa-
tion limit of HRTEM imaging differ significantly, which
enables a question of whether the non-linear information is
useful for structural determination, so in this paper the
information beyond the linear information limit is studied
by means of a multislice simulation with wurtzite-
structured AlN as the model. For non-aberration-corrected

imaging, the phase of the non-linear information of reflec-
tion 013 is found to be close to the phases of the structure
factor when the sample is thick. With the help of the non-
linear component, Al and N atoms in the projection of
[110] can be separated, indicating that higher-resolution,
even atomic-resolution, structural information can be
obtained by conventional TEM. This paper offers a new
way to employ non-aberration-corrected TEM, but such
mechanisms in electron microscopy or crystallography
remain open issues.
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