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Universal scaling in the Knight-shift anomaly of the doped periodic Anderson model
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We report a dynamical cluster approximation investigation of the doped periodic Anderson model to explain
the universal scaling in the Knight-shift anomaly predicted by the phenomenological two-fluid model and
confirmed in many heavy-fermion compounds. We calculate the quantitative evolution of the orbital-dependent
magnetic susceptibility and reproduce correctly the two-fluid prediction in a large range of doping and
hybridization. Our results confirm the presence of a temperature/energy scale T ∗ for the universal scaling
and show distinctive behaviors of the Knight-shift anomaly in response to other “orders” at low temperatures.
However, comparison with the temperature evolution of the calculated resistivity and quasiparticle spectral peak
indicates a different characteristic temperature from T ∗, in contradiction with the experimental observation in
CeCoIn5 and other compounds. This reveals a missing piece in the current model calculations in explaining the
two-fluid phenomenology.
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I. INTRODUCTION

The NMR Knight-shift anomaly has been detected in a
few families of materials, including the cuprates [1–3], heavy-
fermion compounds CeCu2Si2, UPt3, and URu2Si2 [4,5], and
most recently iron-based superconductors AFe2As2 (A = K,
Rb, Cs) [6]. As a ubiquitous non-Fermi liquid behavior in
correlated systems, it manifests itself as the breakdown of the
proportionality between the Knight shift and magnetic suscep-
tibility as seen in normal Fermi liquids. For example, in the
CeMIn5 (M = Rh, Ir, or Co) class of heavy-fermion materials
[7–9], the Knight shift K is proportional to the susceptibility
at high temperatures. However, this simple relation fails below
a material-dependent crossover temperature T ∗ ∼ 10–100 K,
which reflects the onset of lattice coherence or hybridization
between conduction electrons and localized f electrons. More
interestingly, the Knight-shift anomaly has been observed to
obey a universal scaling in a particular temperature regime
across a dozen heavy-fermion materials, which has attracted
considerable attention [10] among various exotic behaviors of
heavy-electron materials.

Theoretically, the Knight-shift anomaly has been argued to
be due to a temperature-dependent hyperfine interaction [11]
or the crystal field occupations of the 4f (5f) electrons in the
rare-earth or actinide ions [12]. However, these developments
have been criticized because of the much higher energy scale
of the hyperfine coupling compared with the Kondo and crystal
field interactions [13]. To understand diverse non-Fermi liquid
behaviors observed in heavy-electron materials including the
universality of the Knight-shift anomaly, a phenomenological
two-fluid theory has been developed as a promising framework
[14–19]. Specifically, this two-fluid model argues that below
a material-dependent coherence temperature, T ∗, an itinerant
heavy-electron Kondo liquid, which displays non-Fermi liquid
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scaling behavior, emerges as the localized f electrons collec-
tively hybridize with the conduction electrons. This emergent
Kondo liquid coexists with a spin liquid formed by the lattice
of local moments of f electrons whose magnitude is reduced
by the hybridization. Below T ∗ both the residual unhybridized
local moments and the emergent Kondo liquid contribute to the
Knight shift but with different weights so that the Knight shift
is no longer proportional to the total susceptibility. Moreover,
the relative weight of the local moments is continuously
reduced with decreasing temperature whereas the weight of the
Kondo liquid increases. These two components compete over a
broad range of temperatures below T ∗ until the onset of either
long-range order antiferromagnetism or superconductivity as
ground states [14–20]. Although the intertwined two-fluid pic-
ture has gained much interest in accounting for several anoma-
lous heavy-fermion properties, a minimal microscopic model
that can clarify the nature of the two fluids and provide a com-
prehensive and quantitative understanding is still lacking [18].

To this end, one of us (M.J.) has performed a determinant
quantum Monte Carlo (DQMC) simulation to gain some
insight into the universal scaling behavior of the Knight-shift
anomaly reported in experiments and the two-fluid theory
[21]. That previous work confirmed the expectation that the
different temperature evolution of orbital-dependent magnetic
susceptibilities plays a key role [22]. They were able to derive
the universal behavior of the Knight-shift anomaly below
a crossover temperature T ∗, in qualitative agreement with
experiments and the two-fluid prediction. However, while
this provides the first theoretical support of the Kondo liquid
scaling, the calculations are limited to the half-filled periodic
Anderson model (PAM) due to the notorious sign problem in
DQMC simulations. This is in contrast with the metallic nature
of the usual heavy-fermion systems. For example, in a recent
study, the particular fillings 〈nf 〉 ∼ 1,〈nc〉 ∼ 0.9 were used for
the Ce-115 family of heavy-fermion materials to investigate
the d-wave superconductivity in the frustrated PAM [23]. It
is therefore necessary to study the PAM away from the half
filling.
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The paper is organized as follows: Section II discusses
the PAM Hamiltonian and dynamical cluster approximation
(DCA) methods including the calculation of magnetic suscep-
tibilities. Section III first provides a brief overview of the NMR
Knight-shift anomaly and then illustrates its occurrence in the
doped PAM from DCA simulations. Section IV focuses on our
key results, namely the universal scaling of the Knight-shift
anomaly in terms of both hybridization and doping level.
Section V examines the spectral properties and quasiparticle
scattering rate and compares their behavior with the Knight-
shift anomaly. Section VI summarizes our results.

II. MODEL AND METHODOLOGY

Here we extend our previous investigation to the doped
system by means of the dynamical cluster approximation
(DCA) [24,25]. Absent the severe sign problem, the DCA
allows us to explore how the universal scaling behavior
observed in the half-filled PAM [21] evolves in hole-doped
systems. In the past decades, the PAM has been extensively
studied via dynamical mean field theory (DMFT) and its
various extensions, e.g., the DCA and cellular DMFT, aiming
to explore its phase diagram [26,27], d-wave superconductivity
[23], Mott metal-insulator transition [28–30], strange metal-
licity [31], existence of ferromagnetism [32], charge order
[33], or generalized versions of the PAM, for example, in
the presence of disorder [34], attractive interaction [35], or
triangular lattices [36].

The PAM on a square lattice is conventionally believed to
capture the essential physics of heavy-fermion materials via
a lattice of two orbitals of electrons, one of which is strongly
correlated f electrons that hybridize with the conduction
electrons. The Hamiltonian reads as

H = −t
∑
〈ij〉,σ

(c†iσ cjσ + c
†
jσ ciσ ) − V

∑
iσ

(c†iσ fiσ + f
†
iσ ciσ )

+U
∑

i

(
n

f

i↑ − 1

2

)(
n

f

i↓ − 1

2

)

−
∑
iσ

(
μcn

c
iσ + μf n

f

iσ

)
, (1)

which is same as the model employed in our previous
work [21]. For more details on the relevant basic physics
of the PAM and extensive review of another closely related
Kondo lattice model, we refer the reader to Refs. [21,37].
c
†
iσ (ciσ ) and f

†
iσ (fiσ ) are creation (annihilation) operators

for the conduction and local f electrons on site i with spin
σ , respectively. n

c,f

iσ are the associated number operators.
t is the hopping parameter of the conduction electrons on
nearest-neighbor sites 〈ij 〉 of a square lattice, U the local
repulsive interaction in the f orbital, and V the hybridization
between the conduction and f electrons. μc,f denotes the
orbital-dependent chemical potential. t = 1 sets the energy
scale throughout the paper.

We remark that differently from the model settings in [23],
here we adopt the fixed 〈nc〉 ∼ 1 by taking the chemical
potential for the conduction electron to be μc = 0, while the
f -electron orbital is doped with varying occupancy spanning
from the Kondo regime (〈nf 〉 ≈ 1) to the mixed-valence

regime (〈nf 〉 < 1). This is done via tuning an “artificially”
orbital-dependent chemical potential μc,f in order to explicitly
examine the impact of f -orbital occupancy, which is difficult
to be realized if we simply fix the total occupancy via a “global”
chemical potential μ = μc = μf . In this way, we focus on the
doping effects in the f orbital on the Knight-shift anomaly
and its universality in terms of temperature and doping level.
We note that 〈nc〉 ∼ 1 resides in a special situation where
the Van Hove singularity in the density of states of the
conduction electrons in a tight-binding model such as the
PAM with nearest-neighbor hopping in a square lattice may
plays a role. This allows us to compare directly with previous
results obtained using DQMC where we had both nc = 1
and nf = 1. On the other hand, we found that the essential
physics is not altered for more generic cases, e.g., with a fixed
total occupancy in spite of the charge redistribution between
conduction and f electrons.

As an extension of the dynamical mean field theory (DMFT)
[38], the DCA represents the bulk lattice problem by a finite
number of cluster degrees of freedom embedded in a self-
consistent mean-field host via a coarse-graining procedure of
the Green’s function, in which the Brillouin zone is divided into
Nc patches and the self-energy is assumed to be constant on
these patches. In this way, the DCA deals with all correlations
within the cluster, while the longer range correlations outside
the cluster are described in the mean-field level. This gives
an approximation of the thermodynamic limit and the exact
solution of the lattice model can be reproduced in the limit of
infinite cluster size. In practice, the most time-consuming part
of the DCA self-consistent loop is the cluster solver, which
includes either perturbative techniques such as the fluctuation-
exchange approximation or nonperturbative techniques such
as quantum Monte Carlo (QMC) or exact diagonalization.
One widely used approach is the continuous-time QMC
(CT-QMC), which is based on a diagrammatic expansion
of the partition function to all orders [39]. We will adopt a
particular version of CT-QMC, namely the continuous-time
auxiliary-field (CT-AUX) algorithm, which is based on an
interaction expansion combined with an auxiliary-field decom-
position of the interaction vertices owing to its accuracy and
efficiency [40].

For later usage, we mention that the local magnetic
susceptibility is calculated in the CT-AUX cluster solver after
achieving the DCA self-consistency as

χαβ = 1

Nc

∑
i

∫ β

0
dτ

〈[
nα

i↑(τ ) − nα
i↓(τ )

][
n

β

i↑(0) − n
β

i↓(0)
]〉

(2)

with α,β denoting the conduction- and f -electron orbitals
in the PAM, respectively. In principle, because the self-
consistency in the DCA is achieved only at the single-particle
level, e.g., for self-energy, the two-particle coarse-grained
quantities such as q-dependent charge/spin susceptibility are
not identical to those of the cluster [24]. In fact, it is much more
involved and time-consuming to calculate the two-particle
quantities within the DCA [24,25] and recently developed
DCA+ algorithm [41,42]. However, the local cluster quantities
such as χαβ presented here are identical to the local lattice
ones. We emphasize that in our simulations the Knight-shift
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anomaly usually occurs at relatively high temperatures, where
the local susceptibilities do not differ much from their uniform
(q = 0) counterpart, which implies that the DCA cluster size
plays a minor role. For the same reason, it is reasonable that the
correlation strength U does not play a significant role either.
Therefore, we focus on the particular parameters: U/t =
4,Nc = 16. We have confirmed that other U , Nc, and even
different band structures, e.g., finite next-nearest-neighbor
hoppings t ′ for conduction electrons and/or hybridization
between orbitals, do not modify the results throughout the
paper qualitatively.

III. NMR KNIGHT-SHIFT ANOMALY

The hyperfine interactions coupling the nuclear spins 
I to
the electron spins 
S significantly perturb the nuclear spins,
which enables the nuclei to probe the susceptibility of the
electron quasiparticles [22]. Specifically, this is reflected in the
Knight shift that measures the percentage shift of the nuclear
magnetic resonance (NMR) frequency from that of an isolated
nucleus. In real materials, the hyperfine coupling is generally
not isotropic but rather a tensor quantity Hhyp = 
I · ∑

i Ai ·

Si so that the Knight shift also has a tensor form K = A ·
χ , where Ai is the hyperfine interaction matrix and χ is the
magnetic susceptibility of the electrons. Note that in those
systems with local moments such as rare-earth materials, the
hyperfine coupling can be both on-site coupling to itinerant
electron spins 
Sc

i and transferred coupling to localized electron
spins 
Sf

i , the latter of which plays an important role in materials
with localized electrons. For the nucleus located at the site
of the local moment such as lanthanide and actinide atoms,
the on-site hyperfine coupling can be so large that the fast
relaxation rate results in difficulty in detecting spin echo [22].
Therefore, the transferred hyperfine coupling of ligand nuclei
to their neighboring local moments is often more useful. From
now on, we only consider the nuclear spins on the ligand sites
and rewrite the hyperfine coupling as

Hhyp = 
Ii · (
A
Sc

i + B 
Sf

i

)
, (3)

where A denotes the on-site hyperfine interaction with the
conduction-electron spin and B is a transferred hyperfine
interaction with the f -electron spin. Note that the tensor
notation is dropped for simplicity. If the electron spins are
polarized via an external magnetic field H , then Sc

i = (χcc +
χcf )H and S

f

i = (χcf + χff )H , where χcc,χcf ,χff denote
three components of the susceptibilities, so that the total
susceptibility and Knight shift are

χ (T ) = χcc(T ) + 2χcf (T ) + χff (T ),

K(T ) = Aχcc(T ) + (A + B)χcf (T ) + Bχff (T ). (4)

Apparently the normal Fermi liquid behavior K ∼ χ is
reproduced if A = B. Generally, A �= B and the three types
of susceptibilities can have quite different temperature evolu-
tions. Hence, in a range of temperature the Knight shift will
not be proportional to susceptibility, namely the emergence
of the Knight-shift anomaly. Experimentally, its occurrence
below a material-dependent temperature scale T ∗ has been
observed in a few families of heavy-electron materials [4,5,22].

FIG. 1. Distinct temperature evolution of three types of local
magnetic susceptibility for 〈nf 〉 = 0.9 implies the emergence of the
Knight-shift anomaly.

Theoretically, as argued in the two-fluid theory [14–18],
T ∗ corresponds to the coherence temperature of the Kondo
lattice below which the local moment and itinerant degrees
of freedom become entangled and the heavy-electron Kondo
fluid begins to emerge. Our previous work in the half-filled
PAM [21] also numerically illustrated the existence of this
coherence temperature scale. The purpose of the present paper
is to show that all essential properties on the Knight-shift
anomaly reported in [21] persist in the more general doped
systems.
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Figure 1 provides evidence of the distinct temperature
evolutions of three types of susceptibilities χcc,χcf , and χff

for varying hybridization V , which signifies the possibility of
the Knight-shift anomaly. Although the present study focuses
on the relatively high temperature regime, namely T/t � 0.1,
due to the scale of the crossover temperature T ∗ discussed later,
it is informative to discuss the whole temperature evolution
of the susceptibilities. For weak hybridization (small V ), the
conduction electrons only weakly interact with the f -electron
moments so that χcc is expected to exhibit a T -independent
Pauli behavior at low temperatures. However, Fig. 1(a)
displays a gradual increase with lowering temperature. In fact,
even the flatness of χcc(T ) anticipated for strong hybridization
at low temperature disappears. This issue was attributed to
the Van Hove singularity in the density of states associated
with the half-filled conduction band [21]. Here the lack
of T -independent χcc in the doped PAM stems from both
the Van Hove singularity and overcomplete screening of f -
electron local moments (〈nc〉 = 1.0,〈nf 〉 = 0.9). Appendix A
includes more discussions and comparison between DQMC
and DCA results. Figure 1(b) shows the behavior of the
interorbital susceptibility χcf , which is negative due to the
antialignment between the conduction- and f -electron spins.
As expected, a stronger hybridization leads to a larger |χcf | at
the high-temperature regime. However, lowering T induces a
nonmonotonic evolution of χcf (V ) with the critical V around
the quantum critical hybridization separating f -electron anti-
ferromagnetism and c–f singlet phases, which also occurs for
〈nc〉 = 〈nf 〉 = 1.0 [21]. Naturally, the small |χcf | originates
from the weak hybridization at small V and the constraint due
to the singlet formation at large V . Figure 1(c) displays the
Curie-like divergence of χff for weak hybridization, while
stronger hybridization induces antialignment between c–f

electron spins to form spin singlets, as manifested in the
gradual flatness of the temperature evolution of χff .

With the temperature evolution of χcc, χcf , and χff , we
can plot K versus χ with T as an implicit parameter, namely
the Clogston-Jaccarrino plot [43]. Note that experimentally
the Knight shift and magnetic susceptibility can be measured
independently. If there is only a single spin component that
gives rise to the magnetic susceptibility, then the data will
form a straight line, which is not generic in the PAM with
two orbitals. We remark that, without loss of generality,
the hyperfine couplings are chosen as A = 0.2 and B = 1.0
throughout the paper [44]. For large enough hybridization
V in the half-filled PAM [21], the curves of K(χ ) show
counterclockwise turnaround with decreasing temperature,
which originates from the peak structure of the total suscep-
tibility χ (T ). Figure 2 illustrates that this feature persists in
the doped PAM for V/t � 1.2 but with a second clockwise
turnaround, which is due to the continual increase of the total
susceptibility in Fig. 3 at lower temperature. The peak value of
total susceptibility decreases with increasing V , which leads
to the compression of the K(χ ) curve towards the origin.
Note that experimentally both clockwise and counterclockwise
of traversal have been observed, depending on the particular
values and signs of the hyperfine coupling tensors A and B,
whose determination are nontrivial in practice [22].

As done in the half-filled PAM [21] and experimentally
[5], the high-temperature regime of K(χ ) can be fitted with

FIG. 2. The Knight shift K versus the total susceptibility χ

with T as an implicit parameter. K(χ ) shows counterclockwise
turnaround with decreasing temperature but displays a second
clockwise turnaround at lower temperature for strong hybridizations
due to the continual increase of the total susceptibility in Fig. 3.

a straight line [45], K = Beff χ + K0 eff . Figure 3 illustrates
the Knight-shift anomaly by comparing χ and K̃ = (K −
K0 eff)/Beff , which clearly shows the deviation between χ and
K̃ below a V -dependent temperature scale for a wide range of
hybridizations. For large hybridization, the total susceptibility
has a peak characterizing the formation of the hybridized local
moment. At lower temperatures, as discussed in Fig. 1, the
continual increase of the total susceptibility is attributed to
both the Van Hove singularity and the mismatch of the c–f

orbital occupancies. Note that the peak value decreases with
increasing V , which is consistent with the trend in Fig. 2 that
the turnaround point for large V precedes that for small V .

FIG. 3. The Knight-shift anomaly manifested by the deviation
between the renormalized Knight shift K̃ = (K − K0 eff )/Beff and
total susceptibility χ for 〈nf 〉 = 0.9 below a certain temperature
scale. The continual increase of χ originates from both the Van
Hove singularity and the mismatch of the c–f orbital occupancies as
discussed in Fig. 1.
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FIG. 4. Universal logarithmic scaling of KHF below a V -
dependent temperature T ∗ for a wide range of hybridization for
〈nf 〉 = 0.9. K0

HF and T ∗ are free parameters for fitting KHF(T )
with Eq. (5). The black curve shows the scaling function (1 −
T/T ∗)3/2[1 + ln(T ∗/T )] for comparison. T ∗ increases with the hy-
bridization V , reflecting the enhancement of coherence between c–f

electrons, while the prefactor K0
HF decreases with the hybridization.

See text for more discussion.

IV. UNIVERSAL SCALING WITH VARYING
HYBRIDIZATION AND DOPING

The Knight-shift anomaly below the V -dependent temper-
ature scale T ∗ in Fig. 3 implies that the physical quantity
KHF = K̃ − χ reflects the increasingly important role of hy-
bridization between the f -electron spins and the conduction-
electron spins. The two-fluid model [14–19] argues that below
T ∗ the hybridization-induced heavy electrons and residual
unhybridized f -local moments coexist and both contribute
to the Knight shift but with different weights so that K is no
longer proportional to the total susceptibility. KHF strongly
depends on the hybridization V (not shown here), which is
reminiscent of its material dependence in experiments. One
remarkable feature associated with the Knight-shift anomaly is
its scaling behavior observed in a wide range of heavy-fermion
materials [4], which provides strong support for the two-fluid
model [17]. Empirically, KHF has been found to exhibit a
universal logarithmic divergence with decreasing temperature
below T ∗ [16]:

KHF(T ) = K0
HF(1 − T/T ∗)3/2[1 + ln(T ∗/T )], (5)

where K0
HF and T ∗ are material-dependent constants. Figure 4

displays the scaling behavior of KHF(T ) by fitting it near T ∗
with Eq. (5) using parameters K0

HF and T ∗ for a wide range
of hybridization. The intriguing universal logarithmic scaling
below a V -dependent temperature T ∗ provides a microscopic
demonstration of the Knight-shift anomaly, suggesting that
heavy-electron materials can be described in a unified way
only with distinct crossover temperature T ∗. In Appendix B,
we discuss the results for generic nc away from the Van
Hove singularity. We fix the total occupancy nc + nf and
find that there is a charge redistribution between conduction
and f electrons with temperature. However, the same universal
scaling seems robust in spite of this complication.

Figure 4 reveals several noticeable features of the Knight-
shift anomaly in the doped PAM. Evidently, the scaling
of KHF only applies between T ∗ and a lower temperature
scale T0, which is consistent with experimental observations
and reflects the intervention of other effects at temperatures
below T0 [17]. The low-temperature behaviors of KHF differ
distinctively between weak and strong hybridizations. In
particular, at small V and absent antiferromagnetism, KHF

keeps increasing and the deviation from the scaling formula
originates in part from the interplay between the residual f

moments and the conduction electrons. In the presence of
long-range antiferromagnetic order, the Knight-shift anomaly
is typically suppressed, owing to the competition between
the heavy-electron formation and the localization caused
by the magnetic ordering. This is termed relocalization of
heavy electrons, as has been observed in CeRhIn5, CePt2In7,
and other heavy-fermion antiferromagnets [5,46]. In either
case, the f -electron moments remain partially screened and
partially localized and one expects a continuing competition
between the itinerant and localized behavior, causing possible
coexistence of long-range antiferromagnetism (or a spin liquid
in the absence of long-range order) and unconventional
superconductivity [17]. While at large V , KHF is seen to
saturate below T0, the constant behavior at low temperatures
reflects complete hybridization of the f -electron moments
and the ground state is a heavy Fermi liquid. Between these
two regimes, one finds a minimal deviation of KHF from
the two-fluid scaling at an intermediate V/t ∼ 1.2. This
corresponds roughly to the quantum critical point between
antiferromagnetism and the Fermi liquid, suggesting that the
two-fluid scaling has less intervention by low-temperature
“orders”. We note that the onset temperature T ∗ increases with
the hybridization V , reflecting the enhancement of coherence
between c–f electrons. On the other hand, the prefactor K0

HF,
which is relevant to the concept of hybridization effectiveness
in the two-fluid model, decreases with the hybridization. In
the two-fluid model, K0

HF is inversely proportional to T ∗ [17],
which may partially explain the change in K0

HF.
Figure 5 provides a systematic study of the Knight-shift

anomaly for varying 〈nf 〉 in all three regimes of hybridizations.
Similarly to the case in Fig. 4, KHF displays universal
scaling behavior below T ∗ down to a breakdown temperature
T0. For weak hybridization, KHF approaches gradually the
scaling formula at low temperatures with decreasing 〈nf 〉,
indicating the weakening of the local-moment effect away
from half filling. For intermediate and strong hybridizations,
KHF below T0 first approaches the universal scaling but then
deviates again. This nonmonotonic variation with 〈nf 〉 reflects
the crossover from the heavy-fermion regime (〈nf 〉 = 1)
to the mixed-valence regime. In particular, it suggests two
different Fermi liquid states for 〈nf 〉 ∼ 1 and 〈nf 〉 � 1 at
strong hybridization, probably separated by an intermediate
non-Fermi liquid phase around 〈nf 〉 ∼ 0.75. Interestingly, for
all doping levels illustrated including half filling, the onset
temperature of the Knight-shift anomaly, T ∗, grows rapidly
with the hybridization parameter V as expected, but only
weakly on 〈nf 〉 as shown in Fig. 6. This suggests that the
variation of 〈nf 〉 plays a less important role in determining
the magnitude of the hybridization compared to V . Figure 6
also shows the decrease of the prefactor K0

HF with 〈nf 〉 and
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FIG. 5. Universal logarithmic scaling of KHF with varying f -
electron occupancy 〈nf 〉 for three hybridization regimes. The black
curve shows the scaling function (1 − T/T ∗)3/2[1 + ln(T ∗/T )] for
comparison. Doping strongly modifies the behavior of KHF after the
scaling breakdown at low temperatures in comparison with the scaling
curve. A crossover is seen around V = 1.2, possibly corresponding
to the transition between heavy-fermion and strong mixed-valence
regimes.

hybridization V , which provides a strong hint on two extreme
cases, namely strong enough hybridization and/or very low
〈nf 〉, where K0

HF vanishes leading to the suppression of the
Knight-shift anomaly in those systems. In fact, as argued in
the two-fluid model, the crucial ingredient for the occurrence

FIG. 6. Evolution of T ∗ and K0
HF with doping and hybridization

based on the results in Fig. 4 and Fig. 5. For all doping levels including
half filling, T ∗ grows rapidly with V but only weakly with doping.
K0

HF decreases with both 〈nf 〉 and hybridization V , which implies
the suppression of the Knight-shift anomaly in systems with either
strong enough hybridization or very low 〈nf 〉.

of an obvious Knight-shift anomaly is the existence of two
competing fluids, which is missing in both extreme cases
where only one fluid dominates: the heavy electrons for strong
hybridization V and the conduction electrons for low enough
〈nf 〉. Our DCA simulations confirmed the suppression of the
Knight-shift anomaly in both cases.

V. COMPARISON WITH THE DENSITY OF STATES
AND THE QUASIPARTICLE SCATTERING RATE

One essential piece of the two-fluid model is that the density
of states (DOS) of the heavy-electron Kondo liquid has the
same universal scaling form as the Knight-shift anomaly.
Undoubtedly, it is important to numerically examine how
these two universalities are correlated in PAM. To this end,
we calculate the local density of states (DOS) for f electrons
Nf (ω) via analytical continuation of the local imaginary-time
Green’s function Gf (τ ) = −∑

j
〈cj±(τ )c†j±(0)〉 by inverting

Gf (τ ) =
∫ ∞

−∞
dω

e−ωτ

e−βω + 1
Nf (ω) (6)
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FIG. 7. Temperature evolution of f -electron local density of
states for two typical hybridizations for 〈nc〉 = 1.0,〈nf 〉 = 0.9. The
spectral peak shifts towards the Fermi energy with lowering T , which
is accompanied by the increase of the peak height.

using the maximum-entropy method [47,48]. The investigation
of the spectral properties and quasiparticle scattering rate in the
PAM and/or related Kondo lattice models has been previously
performed using dynamical mean field theory and related
methods [27–29,35,36,49–52].

In previous two-fluid analysis of existing experimental
data on CeCoIn5 and many other heavy-fermion compounds
[15], it has been suggested that T ∗ provides a unified
temperature/energy scale for the magnetic, transport, and
spectral properties, which should be reflected in the Knight
shift, resistivity, and DOS, respectively. On one hand, the
temperature dependence of the resistivity can be qualitatively
captured by the temperature derivative of the quasiparticle
scattering rate, namely the imaginary part of the local f -
electron self-energy Im�f (ω = 0). As pointed out in [49],
the peak position of −d(Im�f )/d ln T (ω = 0) gives a good
estimate of the coherence temperature in the resistivity. On
the other hand, previous calculations of CeIrIn5 [16,49] have
also shown that the universal scaling can be manifested in the
temperature scaling of the quasiparticle DOS peak.

Figure 7 illustrates the temperature evolution of the f -
electron local density of states Nf (ω) for two characteristic
hybridizations and 〈nf 〉 = 0.9. The right shift of the spectral

FIG. 8. The peak temperature of the temperature derivative of the
quasiparticle scattering rate Q(T ) (solid lines) and the temperature
scale below which the peak height of the local DOS of f electrons
(dashed lines with markers) shows a rapid increase roughly agree,
especially for small dopings and strong hybridizations. This temper-
ature scale grows with V but is much lower than the onset temperature
T ∗ of the Knight-shift anomaly.

peak with lowering T reflects the gradual formation of the
hybridization gap, which is accompanied by the increase of
the peak height. Figure 8 further compares the temperature
derivative of quasiparticle scattering rate defined as

Q(T ) ≡ −d[Im�f (iω = πT )]

d ln T
(7)

(solid lines) and the peak height of Nf (ω) (dashed lines with
markers) with varying 〈nf 〉 [53]. The peak of Q(T ) roughly
resides at the temperature scale below which the peak height
of local DOS shows a rapid increase (more clear for small
dopings and strong hybridizations). Although apparently this
temperature scale grows with V , it is much lower than the
onset temperature T ∗ of the Knight-shift anomaly, which is
in distinct difference from the experimental observation in
CeCoIn5 and many other compounds. However, we should
note that there do exist a few examples such as CeCu2Si2 and
UBe13, where the resistivity peak appears at a much lower
temperature than T ∗ estimated from the NMR Knight shift
[15]. There are two possible reasons for this discrepancy:
either accidental due to the involvement of some other effects,
or representing a particular kind of heavy-fermion physics
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different from that of CeCoIn5. In either case, it would
be important to clarify the conditions for which the three
quantities exhibit similar/different T ∗. Possible extensions
would be to perform calculations taking into account additional
bosonic excitations such as spin fluctuations or phonons, which
might lead to dynamical renormalization of the hybridization
V and a large reduction of the coherence temperature [54].
This might give an additional control parameter to tune T ∗ for
fitting with the experimental findings.

VI. CONCLUSION

We extend previous theoretical study of the NMR Knight
shift in the half-filled periodic Anderson model to the doped
case using the DCA method. Our simulations show that
the universal scaling of the Knight-shift anomaly persists
in the moderate doping levels and hybridization regime and
represents a robust property of the Anderson lattice. Our
work provides a plausible basis for developing a microscopic
understanding of the phenomenological two-fluid model.
However, it also indicates that some essential physics is
missing in the current model calculations, as it cannot
reproduce the common T ∗ for the magnetic, transport, and
spectral properties observed in CeCoIn5 and many other
heavy-fermion compounds. This reveals a missing piece in
explaining the two-fluid phenomenology in the current model
calculations, which may be the key for a thorough solution of
the heavy-fermion problem.
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APPENDIX A: COMPARISON OF LOCAL
SUSCEPTIBILITIES BETWEEN DQMC AND THE DCA

IN THE HALF-FILLED PAM

The main text aims to extend the previous DQMC study on
the half-filled PAM [21] to the generally doped PAM using the
DCA method. Therefore, it is valuable to compare the three
orbital-dependent local susceptibilities in the half-filled case
from two numerical methods.

Adopting a characteristic common DQMC lattice size
and DCA cluster size 4 × 4, Fig. 9 illustrates the excel-
lent agreement between DQMC and the DCA of all three
local susceptibilities at high temperatures for half filling.
Nevertheless, at lower temperatures, they deviate for weak
hybridization V = 0.8 because the presence of the nonlocal
antiferromagnetic correlation is treated in essentially different
ways. The DCA incorporates the host outside of the cluster in
a self-consistent mean-field manner, while DQMC normally
considers the bulk system by employing the periodic boundary
conditions. It is well known that DQMC simulations exhibit
strong finite-size effects for weak correlations or when the
itinerancy of conduction electrons is strong [55]. Figure 9
shows the approach of DQMC’s local susceptibilities to

FIG. 9. Comparison of local susceptibilities in the half-filled
PAM from DQMC and DCA simulations, which show excellent
agreement at high temperatures. The deviation at low temperature
for weak hybridization is due to the finite-size effect in DQMC and
can be recovered by simulating larger lattice size. The Van Hove
singularity induced continuing increase of χcc shows up even for
large V due to the mean-field host in the DCA to effectively enhance
the itinerancy of conduction electrons.

DCA curves via two larger lattice sizes, N = 6 × 6, 8 × 8.
Apparently, the deviation between DQMC and DCA curves
is expected to completely vanish in the limit of the infinite
DQMC lattice or DCA cluster size. As expected, this difference
is hidden for strong hybridization V = 1.6 due to the locality
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FIG. 10. Top: Universal scaling of the Knight-shift anomaly for
fixed total orbital occupancy 〈nc + nf 〉 = 1.9. T ∗ and K0

HF are close
to the values in Fig. 4, indicating the robustness of the universality
against the orbital occupancy distribution. Bottom: Orbital occupancy
as a function of temperature indicates that the hole doping mainly
affects the conduction-electron occupancy at low temperatures,
especially for weak hybridization.

of the singlet formation via hybridization so that both DQMC’s
finite-size effects and the DCA’s dependence on cluster size
can be neglected.

One issue discussed in the main text is the Van Hove
singularity manifested in χcc especially for weak hybridization
due to the half-filled conduction electrons. Figure 9 clearly
shows that the associated continuing increase of χcc at low
temperatures already occurs at 〈nf 〉 = 1.0 for V = 0.8 and
even for strong hybridization V = 1.6 in the DCA, while
the flatness of χcc at low temperatures is correctly captured
in DQMC for large V . This is largely due to the mean-
field host coupled self-consistently with the DCA cluster
so that the itinerancy of conduction electrons is effectively
enhanced. More discussions on other features of magnetic
susceptibilities of the half-filled PAM can be found in
Ref. [21].

APPENDIX B: FIXED TOTAL
ORBITAL OCCUPANCY

As mentioned in the main text, we adopt the fixed 〈nc〉 ∼ 1
but varying 〈nf 〉 via tuning an “artificially” orbital-dependent
chemical potential μc,f in order to explicitly examine the
impact of f -orbital occupancy. As discussed in Fig. 1 and
Appendix A, 〈nc〉 ∼ 1 leads to the Van Hove singularity in
the density of states causing the lack of Pauli-like behavior
in χcc(T ) for small V . Hence, it is interesting to check our
major result, namely the universal scaling of the Knight-shift
anomaly in Fig. 4, in more generic settings.

The upper panel of Fig. 10 shows that the universal scaling
of the Knight-shift anomaly persists for fixed total orbital
occupancy 〈nc + nf 〉 = 1.9 via tuning a “global” chemical
potential μ = μc = μf . Remarkably, even T ∗ and K0

HF are
quite close to the values in Fig. 4. The bottom panel shows the
orbital occupancy as a function of temperature, which indicates
that the hole doping mainly affects the conduction-electron
occupancy at low temperatures, especially for weak hybridiza-
tion, while the singlet formation for strong hybridization
results in more even distribution between orbitals. Figure 10
provides evidence of the robustness of the universal Knight-
shift anomaly against the orbital occupancy distribution,
supporting the major results in the main text.
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