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No-cloning theorem is fundamental for quantummechanics and for quantum information
science that states an unknownquantumstate cannot be cloned perfectly. However,we can
try to clone a quantum state approximately with the optimal fidelity, or instead, we can try
to clone it perfectly with the largest probability. Thus various quantum cloning machines
have been designed for different quantum information protocols. Specifically, quantum
cloning machines can be designed to analyze the security of quantum key distribution
protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations.
Somewell-knownquantumcloningmachines include universal quantumcloningmachine,
phase-covariant cloning machine, the asymmetric quantum cloning machine and the
probabilistic quantum cloning machine. In the past years, much progress has been made
in studying quantum cloning machines and their applications and implementations, both
theoretically and experimentally. In this review, we will give a complete description of
those important developments about quantum cloning and some related topics. On the
other hand, this review is self-consistent, and in particular, we try to present some detailed
formulations so that further study can be taken based on those results.
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1. Introduction

In the past years, the study of quantum computation and quantum information has been attracting much attention from
various research communities. Quantum information processing (QIP) is based on principles of quantummechanics (Nielsen
and Chuang, 2000). It promises algorithms which may surpass their classical counterparts. One of those algorithms is Shor
algorithm (Shor, 1994) which can factorize large number exponentially faster than the existing classical algorithms do
(Ekert and Jozsa, 1996). In this sense, the RSA public key cryptosystem (Rivest, 1978) widely used in modern financial
systems and networks might be attacked easily if a quantum computer exists, since the security of RSA system is based
on assumption that it is extremely difficult to factorize a large number. On the other hand, QIP provides an unconditional
secure quantum cryptography based a principle of quantum mechanics, no-cloning theorem (Wootters and Zurek, 1982),
which means that an unknown quantum state cannot be cloned perfectly.

For comparison, in classical information science, we use bit which is either ‘‘0’’ or ‘‘1’’ to carry the information, while for
quantum information, a bit of quantum information which is named as ‘‘qubit’’ is encoded in a quantum state which may
be a superposition of states |0⟩ and |1⟩. For example, a general qubit takes the form α|0⟩ + β|1⟩, where parameters α and
β are complex numbers according to quantummechanics and are normalized as |α|

2
+ |β|

2
= 1. So a qubit can collapse to

either |0⟩ or |1⟩with some probability if a measurement is performed. The classical information can be copied perfectly. We
know that we can copy a file in a computer without any principal restriction. On the contrary, QIP is based on principles of
quantummechanics, which is linear and thus an arbitrary quantum state cannot be cloned perfectly since of the no-cloning
theorem. We use generally terminology ‘‘clone’’ instead of ‘‘copy’’ for reason of no-cloning theorem in Wootters and Zurek
(1982). No-cloning, however, is not the end of the story.

It is prohibited to have a perfect quantum clone. It is still possible that we can copy a quantum state approximately or
probabilistically. There are various quantum protocols for QIP which may use tool of quantum cloning for different goals.
Thus various quantum cloning machines have been created both theoretically and experimentally. The study of quantum
cloning is of fundamental interest in QIP. Additionally, the quantum cloningmachines can also be applied directly in various
quantum key distribution (QKD) protocols. The first quantum key distribution protocol proposed by Bennett and Brassard
in 1984 (BB84) uses four different qubits, BB84 states (Bennett and Brassard, 1984), to encode classical information in
transmission. Correspondingly, the phase-covariant quantum clonemachine, which can copy optimally all qubits located in
the equator of the Bloch sphere, is proved to be optimal for cloning of states similar as BB84 states. The BB84 protocol can be
extended to six-state protocol, the corresponding cloningmachine is the universal quantumcloningmachinewhich can copy
optimally arbitrary qubits. Similarly the probabilistic quantum cloning machine is for B92 QKD protocol (Bennett, 1992).
Quantum cloning is also related with some fundamentals in quantum information science, for example, the no-cloning
theorem is closely related with no-signaling theorem which means that superluminal communication is forbidden. We can
also use quantum cloning machines for estimating a quantum state or phase information of a quantum state. So the study
of quantum cloning is of interest for reasons of both fundamental and practical applications.

The previouswell-accepted reviews of quantum cloning can be found in Scarani et al. (2005), and also in Cerf and Fiurášek
(2006). Quantum cloning, as other topics of quantum information, developed very fast in the past years. An up-to-date
review is necessary. In the present review, we plan to give a full description of results about quantum cloning and some
closely related topics. This review is self-consistent and some fundamental knowledge is also introduced. In particular, a
main characteristic of this review is that it contains a large number of detailed formulations for the main review topics. It is
thus easy for the beginners to follow those calculations for further study on those quantum cloning topics.

The review is organized as follows: In the next part of this section, we will present in detail some fundamental
concepts of quantum computation and quantum information including the form of qubit represented in Bloch sphere, the
definition of entangled state, some principles of quantum mechanics used in the review. Then we will present in detail
the developments of quantum cloning. Here let us introduce briefly some results contained in this review. In Section 2,
we will review several proofs of no-cloning theorem from different points of view, including a simple presentation, no-
cloning for mixed states, the relationship between no-cloning and no-signaling theorems for quantum states, no-cloning
from information theoretical viewpoints. In Section 3, we will review the universal quantum cloning machine. We will
present the universal quantum cloning machine for qubit and qudit including both symmetric and asymmetric cases. We
then will present a unified quantum cloning machine which can be easily reduced to several universal cloning machines.
Wewill also show some schemes for cloning of mixed states. We will show that the universal quantum cloning machine, by
definition, can copy arbitrary input state, is necessary for a six-state input which are used in QKD. Further, the universal
cloning machine is necessary for a four-state input which is the minimal input set. In Section 5, the phase-covariant
quantum cloning machines will be presented. One important application of this cloning machine is to study the well-
known BB84 quantum cryptography. The phase-covariant quantum cloning machines include the cases of qubit and of
higher dimension. In particular, a unified phase-covariant quantum cloning machine will be presented which can be
adjusted for an arbitrary subset of the mutually unbiased bases. We can also show that the minimal input for phase-
covariant quantum cloning is a set of three states with equal phase distances in the equator of Bloch sphere. The phase-
covariant quantum cloning is actually state-dependent, we thus will present some other cases of state-dependent quantum
cloning.

In Section 9, we present some detailed results of sequential quantum cloning. We expect that further exploration is in
order based on those results.
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Fig. 1. (Color online). A qubit in Bloch sphere, |ψ⟩ = cos θ2 |0⟩ + sin θ
2 e

iφ
|1⟩, it contains amplitude parameter θ and phase parameter φ.

In order to have a full view of all developments in quantum cloning and some closely related topics, we try to review
some references briefly in one to two sentences. Those parts are generally named as ‘other developments and related topics’.
Our aim is to cover as much as possible these developments in quantum cloning, but we understand that some important
references might still be missed in this review.

1.1. Quantum information, qubit and quantum entanglement

We have a quantum system constituted by two states |0⟩ and |1⟩. They are orthogonal,

⟨0|1⟩ = 0. (1)

Those two states can be energy levels of an atom, photon polarizations, electron spins, Bose–Einstein condensate with two
intrinsic freedoms or any physical material with quantum properties. In this review, we also use some other standard
notations |0⟩ = |↑⟩, |1⟩ = |↓⟩ and exchange them without mentioning. Simply, those two states can be represented as
two vectors in linear algebra,

|0⟩ =


1
0


, |1⟩ =


0
1


. (2)

Corresponding to bit in classical information science, a qubit in quantum information science is a superposition of two
orthogonal states,

|ψ⟩ = α|0⟩ + β|1⟩, (3)

where a normalization equation should be satisfied,

|α|
2
+ |β|

2
= 1. (4)

Here both α and β are complex parameters which include amplitude and phase information, α = |α|eiφα and β = |β|eiφβ .
So a qubit |ψ⟩ is defined on a two-dimensional Hilbert space C2. In quantummechanics, a whole phase cannot be detected
and thus can be omitted, only the relative phase of α and β is important which is φ = φα −φβ . Nowwe can find that a qubit
can be represented in another form,

|ψ⟩ = cos
θ

2
|0⟩ + sin

θ

2
eiφ |1⟩, (5)

where θ ∈ [0, π], φ ∈ [0, 2π}. It corresponds to a point in the Bloch sphere, see Fig. 1.
The two qubits in separable form can be written as,

|ψ⟩|φ⟩ = (α|0⟩ + β|1⟩)(γ |0⟩ + δ|1⟩)
= αγ |00⟩ + αδ|01⟩ + βγ |10⟩ + αδ|11⟩. (6)

If those two qubits are identical, one can find,

|ψ⟩
⊗2

≡ (α|0⟩ + β|1⟩)(α|0⟩ + β|1⟩)

= α2
|00⟩ +

√
2αβ

1
√
2
(|01⟩ + |10⟩)+ β2

|11⟩. (7)

For convenience, we write the second term as a normalized symmetric state 1
√
2
(|01⟩ + |10⟩)which will be used later.
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For two-qubit state, besides those separable state, we also have the entangled state, for example,

|Φ+
⟩ ≡

1
√
2
(|00⟩ + |11⟩). (8)

This state cannot be written as a product form like |ψ⟩|φ⟩, so it is ‘‘entangled’’. It is actually a maximally entangled state. In
quantum information science, quantum entanglement is the valuable resource which can be widely used in various tasks
and protocols. Complementary to entangled state |Φ+

⟩, we have other three orthogonal and maximally entangled states
which constitute a complete basis for C2

⊗ C2. Those four states are Bell states, here we list them all as follows,

|Φ+
⟩ ≡

1
√
2
(|00⟩ + |11⟩), (9)

|Φ−
⟩ ≡

1
√
2
(|00⟩ − |11⟩), (10)

|Ψ+
⟩ ≡

1
√
2
(|01⟩ + |10⟩), (11)

|Ψ−
⟩ ≡

1
√
2
(|01⟩ − |10⟩). (12)

Those four Bell states can be transformed to each other by local unitary transformations.
Consider three Pauli matrices defined as,

σx =


0 1
1 0


, σy =


0 −i
i 0


, σz =


1 0
0 −1


. (13)

Since σy = iσxσz , if the imaginary unit, ‘‘i’’, is the whole phase, we sometimes use σxσz instead of σy. Bear in mind that we

have |0⟩ =


1
0


, and ⟨0| = (1, 0), so in linear algebra, we have the representation,

|0⟩⟨0| =


1
0


(1, 0) =


1 0
0 0


. (14)

Now three Pauli matrices have an operator representation,

σx = |0⟩⟨1| + |1⟩⟨0|, (15)
σy = −i|0⟩⟨1| + i|1⟩⟨0|, (16)

σz = |0⟩⟨0| − |1⟩⟨1|. (17)

In this review, we will not distinguish the matrix representation and the operator representation. Acting Pauli matrices σx
and σz on a qubit, we find,

σx|0⟩ = |1⟩, σx|1⟩ = |0⟩, (18)
σz |0⟩ = |0⟩, σz |1⟩ = −|1⟩, (19)

which are the bit flip action and phase flip action, respectively, while σy will cause both bit flip and phase flip for a qubit. In
this review, for convenience, we sometimes use notations X ≡ σx, Z ≡ σz to represent the corresponding Pauli matrices.
Also, those Pauli matrices can also be defined in higher dimensional system, while the same notations might be used if no
confusion is caused.

For four Bell states, their relationship by local transformations can be as follows,

|Φ−
⟩ = (I ⊗ σz)|Φ

+
⟩, (20)

|Ψ+
⟩ = (I ⊗ σx)|Φ

+
⟩, (21)

|Ψ−
⟩ = (I ⊗ σxσz)|Φ

+
⟩, (22)

where I is the identity in C2, the Pauli matrices are acting on the second qubit.
Here we have already used the tensor product. Consider two operators, O1 =


A1 B1
C1 D1


, O2 =


A2 B2
C2 D2


, the tensor

product O1 ⊗ O2 is defined and calculated as follows,

O1 ⊗ O2 =


A1O2 B1O2
C1O2 D1O2



=

A1A2 A1B2 B1A2 B1B2
A1C2 A1D2 B1C2 B1D2
C1A2 C1B2 D1A2 D1B2
C1C2 C1D2 D1C2 D1D2

 . (23)
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Whenwe apply a tensor product of, O1 ⊗O2, on a two-qubit quantum state, operator O1 is acting on the first qubit, operator
O2 is acting on the second qubit.

We have already extended one qubit to two-qubit state. Similarly, multipartite qubit state can be obtained. Also we may
try to extend qubit from two-dimension to higher-dimensional system, generally named as ‘‘qutrit’’ for dimension three and
‘‘qudit’’ for dimension d in more general case, the Hilbert space is extended from C2 to Cd. For example, we sometimes have
‘‘qutrit’’ when we consider a quantum state in three dimensional system. For more general case, a qudit is also a superposed
state,

|ψ⟩ =

d−1
j=0

xj|j⟩, (24)

where xj, j = 0, 1, . . . , d−1, are normalized complex parameters. Quantumentanglement can also be in higher dimensional,
multipartite systems.

A qubit |ψ⟩ can be represented by its density matrix,

|ψ⟩⟨ψ | = (α|0⟩ + β|1⟩)(α∗
⟨0| + β∗

⟨1|)

=


|α|

2 αβ∗

α∗β |β|
2


. (25)

However, a general qubitmay be not only the superposed state, which is actually the pure state, but also amixed statewhich
is in a probabilistic form. It can only be represented by a density operator ρ,

ρ =


j

pj|ψj⟩⟨ψj|, (26)

where pj is the probabilistic distribution with


pj = 1.
A density matrix is positive semi-definite, and its trace equals to 1,

ρ ≥ 0, Trρ = 1. (27)

The density matrices of a pure state and a mixed state can be easily distinguished by the following conditions,

Trρ2
= 1, pure state; (28)

Trρ2 < 1, mixed state. (29)

Formultipartite state, one part of the state is the reduced densitymatrix obtained by tracing out other parts. For example,
for two-qubit maximally entangled state |Φ+

AB⟩ constituted by A and B parts, each qubit is a mixed state,

ρA = TrB|Φ+

AB⟩⟨Φ
+

AB| =
1
2
I. (30)

This case is actually a completely mixed state, here I is the identity operator. The identity operator can be written as any
pure state and its orthogonal state with equal probability,

ρA =
1
2
I =

1
2
|ψ⟩⟨ψ | +

1
2
|ψ⊥

⟩⟨ψ⊥
|, (31)

where if |ψ⟩ = α|0⟩ + β|1⟩, its orthogonal state can take the form,

|ψ⊥
⟩ = β∗

|0⟩ − α∗
|1⟩, (32)

where ∗ means the complex conjugation.

1.2. Quantum gates

In QIP, all operations should satisfy the laws of quantum mechanics such as the generally used unitary transformation
and quantum measurement. Similar as in classical computation, all quantum computation can be effectively implemented
by several fundamental gates. The single qubit rotation gate and controlled-NOT (CNOT) gate constitute a complete set of
fundamental gates for universal quantum computation (Barenco et al., 1995). The single qubit rotation gate is just a unitary
transformation on a qubit, R̂(ϑ, φ), defined as

R̂(ϑ, φ)|0⟩ = cosϑ |0⟩ + eiφ sinϑ |1⟩,

R̂(ϑ, φ)|1⟩ = −e−iφ sinϑ |0⟩ + cosϑ |1⟩, (33)

where the phase parameterφ should also be controllable. The CNOT gate is defined as a unitary transformation on two-qubit
system, one qubit is the controlled qubit and another qubit is the target qubit. For a CNOT gate, when the controlled qubit
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is |0⟩, the target qubit does not change; when the controlled qubit is |1⟩, the target qubit should be flipped. Explicitly it is
defined as,

CNOT : |0⟩|0⟩ → |0⟩|0⟩;
CNOT : |0⟩|1⟩ → |0⟩|1⟩;
CNOT : |1⟩|0⟩ → |1⟩|1⟩;
CNOT : |1⟩|1⟩ → |1⟩|0⟩, (34)

where the first qubit is the controlled qubit and the second qubit is the target qubit. By matrix representation, CNOT gate
takes the form,

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (35)

Depending on physical systems, we can use different universal sets of quantum gates to realize the universal quantum
computation.

2. No-cloning theorem

2.1. A simple proof of no-cloning theorem

For classical information, the possibility of cloning it is an essential feature. In classical systems, cloning, in other words,
copying seems no problem. Information stored in computers can be easily made several copies as backup; the accurate
semiconservative replication of DNA steadily passes gene information between generations. But for quantum systems, this
is not the case. As provedbyWootters and Zurek (1982), deterministic cloning of pure states is not possible. After this seminal
work, much interest has been shown in extending and generalizing the original no-cloning theorem (Barnum et al., 1996;
Luo, 2010b; Luo et al., 2009; Luo and Sun, 2010; Piani et al., 2008), which gives us new insight to boundaries of the classical
and quantum. On the other hand, no-signaling, guaranteed by Einstein’s theory of relativity, is also delicately preserved by
no-cloning. This chapter will focus on these topics, hoping to give a thorough description of the no-cloning theorem.

As it is known, a single measurement on a quantum systemwill only reveal minor information about it, but as a result of
which, the quantum systemwill collapse to an eigenstate of the measurement operator and all the other information about
the original state becomes lost. Suppose there exists a cloning machine with a quantum operation U , which duplicates an
arbitrary pure state

U(|ϕ⟩ ⊗ |R⟩ ⊗ |M⟩) = |ϕ⟩ ⊗ |ϕ⟩ ⊗ |M(ϕ)⟩ (36)

here |ϕ⟩ denotes an arbitrary pure state, |R⟩ an initial blank state of the cloningmachine, |M⟩ the initial state of the auxiliary
state(ancilla), and |M(ϕ)⟩is the ancillary state after operation which depends on |ϕ⟩. With such machine, one can get any
number of copies of the original quantum state, and then complete information of it can be determined. However, is it
possible to really build such a machine? No-cloning theorem says no.

Theorem. No quantum operation exist which can perfectly and deterministically duplicate a pure state.

The proof can be in two methods.
(1). Using the linearity of quantummechanics. This proof is first proposedbyWootters andZurek (1982), and also byDieks

(1982). Suppose there exists a perfect cloning machine that can copy an arbitrary quantum state, that is, for any state |ϕ⟩

|ϕ⟩|Σ⟩|M⟩ → |ϕ⟩|ϕ⟩|M(ϕ)⟩

where |Σ⟩ is a blank state, and |M⟩ is the state of auxiliary system(ancilla). Thus for state |0⟩ and |1⟩, we have

|0⟩|Σ⟩|M⟩ → |0⟩|0⟩|M(0)⟩,
|1⟩|Σ⟩|M⟩ → |1⟩|1⟩|M(1)⟩.

In this way, for the state |ψ⟩ = α|0⟩ + β|1⟩

(α|0⟩ + β|1⟩)|Σ⟩|M⟩ → α|00⟩|M(0)⟩ + β|11⟩|M(1)⟩.

On the other hand, |ψ⟩ itself is a pure state, so

|ψ⟩|Σ⟩|M⟩ → (α2
|00⟩ + αβ|01⟩ + αβ|10⟩ + β2

|11⟩)|M(ψ)⟩.

Obviously, the right hand sides of the two equations cannot be equal, as a result, the premise is false that such a perfect
cloning machine exists, which concludes the proof. The linearity of quantummechanics is also used to show that the super-
luminal is not possible (Dieks, 1982).
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(2) Using the properties of unitary operation. This proof is first proposed by Yuen in Yuen (1986), see also Sec. 9-4 of
Peres’s textbook (Peres, 1995). Consider the process of cloning machine as a unitary operator U , then for any two state |ϕ⟩

and |ψ⟩, since under unitary operation the inner product is preserved, we have

⟨ψ |ϕ⟩ = ⟨ψ |UĎU|ϕ⟩ = ⟨ψ |⟨ψ |ϕ⟩|ϕ⟩ = ⟨ψ |ϕ⟩
2.

So ⟨ψ |ϕ⟩ is either 0 or 1. If the value is 0, it means the two states being copied should be orthogonal, while if 1, the two
states are the same.

2.2. No-broadcasting theorem

Following the no cloning theorem for pure states, the impossibility of cloning a mixed state is later proved by Barnum
et al. (1996). In fact, rather than cloning, broadcasting, whose meaning will be presented later in this section, is prohibited
by quantum mechanics. Correlations, as a fundamental theme of science, is also studied in quantum systems. An elegant
no local broadcasting theorem for correlations in a multipartite state is proposed by Piani et al. (2008). With these two no-
broadcasting theorems, it is natural to ask what is the relationship between them. Recently Luo et al. have established the
no-unilocal broadcasting theorem for quantum correlations, which proves to be the bridge between Barnum’s and Piani’s
theorems and with it we are able to build the equivalence between them. The three theorems together would give us a
unified picture of no-broadcasting in quantum systems.

We shall first elaborate on the original no-broadcasting theorem for non-commuting states proposed by Barnum et al.
(1996). Suppose there are two parts A and B of a composite quantum system AB, A is prepared in one of the states {σi},
while B is prepared in the blank state τ . If there exists a quantum operation E which can be performed on system AB, that
is, σk ⊗ τ → E(σk ⊗ τ) = ρout

k and the output state satisfies

Traρout
k = σk and Trbρout

k = σk, ∀k,

we say E broadcasts the set of states {σi}. Here comes Barnum’s theorem (Barnum et al., 1996).

Theorem 1. A set of states {σi} is broadcastable if and only if the states commute with each other.

Several kinds of proof for Theorem 1 have been found (Barnum et al., 2007, 1996; Kalev and Hen, 2008; Lindblad, 1999),
one of them is provided as follows using the property of relative entropy (Kalev and Hen, 2008). We shall only prove Theo-
rem 1 in the case that the set {σi} only have two states σ1 and σ2, fromwhichmore complex cases can be easily extended to.

Proof for Theorem 1. (1) ‘‘if’’ part: since σ1 and σ2 commute, they can be expressed in the same orthonormal basis {|i⟩}:

σk =


i

λk,i|i⟩⟨i|, k = 1, 2.

Because {|i⟩} is an orthonormal set, it can be cloned by an operator E , so we get

ρout
k = E(σk ⊗ τ) =


i

λk,i|ii⟩⟨ii|, k = 1, 2,

thus

Traρout
k = σk, Trbρout

k = σk, k = 1, 2.

So we see σ1 and σ2 are broadcasted by E .
(2) ‘‘only if’’ part: first we shall introduce the concept of relative entropy. The relative entropy S of ρ1 with respect to ρ2

is defined as (Umegaki, 1962)

S(ρ1|ρ2) = Tr[ρ1(ln ρ1 − ln ρ2)].

When ker(ρ1)⊥


ker(ρ2) = 0, S is well-defined, otherwise S leads to ∞ (Wehrl, 1978). We first consider the case
ker(ρ2) ⊆ ker(ρ1), then S < ∞. Denote ρ in

1 = σ1 ⊗ τ and ρ in
2 = σ2 ⊗ τ , we get

S(ρ in
1 |ρ in

2 ) = Tr[σ1 ⊗ τ(log σ1 ⊕ log τ − log σ2 ⊕ log τ ]
= Tra[σ1(log σ1 − log σ2)]Trbτ
= Tra[σ1(log σ1 − log σ2)]
= S(σ1|σ2).

Quantum cloning process E corresponds to a unitary operator U on input state and the ancillary state Σ such that,
ρout
k = U(ρ in

k ⊗Σ)UĎ. Now, we have

S(σ1|σ2) = S(ρ in
1 |ρ in

2 ) = S(ρout
1 |ρout

2 ).
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In general, we remark that for any quantum operation such as the cloning process E , S(E(ρ1)|E(ρ2)) ≤ S(ρ1|ρ2), see for
example Vedral (2002). This is closely related with the monotonicity of relative entropy (Lindblad, 1975),

S(ρab
1 |ρab

2 ) ≥ S(ρb
1 |ρ

b
2),

where ρb
1 denotes the reduced densitymatrix of the composite system ρab

1 , and the equality holds if and only if the following
condition is satisfied:

log ρab
1 − log ρab

2 = Ia ⊗ (log ρb
1 − log ρb

2).

So we have

S(ρout
1 |ρout

2 ) ≥ S(ρk,out
1 |ρ

k,out
2 ), (37)

for k = a, bwhere ρk,out
i denotes Tra(b)ρout

i . The equality holds if and only if

log ρout
1 − log ρout

2 = (log ρa,out
1 − log ρa,out

2 )⊗ Ib

= Ia ⊗ (log ρb,out
1 − log ρb,out

2 ).

Under the broadcasting condition, we get

log ρout
1 − log ρout

2 = (log σ1 − log σ2)⊗ Ib

= Ia ⊗ (log σ1 − log σ2).

But the above equation holds only when σ1 and σ2 are diagonal or they can be diagonalized in the same basis, which means
they commute.

For the case S(σ1|σ2) = ∞, we consider a mixed state σmix = λσ1 + (1 − λ)σ2, where 0 < λ < 1. If σ1 and σ2 can be
broadcast, then so can be σ1 and σmix, due to linearity of the operation. But ker(σmix) ⊆ ker(σ1), thus σ1 and σmix commute,
so σ1 and σ2 commute. Now we have finished the proof of Theorem 1.

We would like to comment that under a weak assumption, it is possible that broadcasting of some information of
quantum state is possible. This one is the quantum state information broadcasting presented recently (Korbicz et al., 2014).

2.3. No-broadcasting for correlations

The quantum entanglement differs quantum world from classical world. Recently, it is also realized that quantum
correlation, which may be beyond the quantum entanglement, is also important for QIP. Here we can first make a
classification of states by correlation (Piani et al., 2008). For a bipartite state ρab shared by two parties A and B, it is called
separable if it can be decomposed as

ρab
= Σjpjρa

j ⊗ ρb
j ,

where {pj} denotes a probability distribution, {ρa
j } and {ρb

j } denote states of party a and b. Otherwise, the ρab is called
entangled.

If ρab can be further decomposed as

ρab
= Σipi|i⟩⟨i| ⊗ ρb

i ,

with {pi} denoting a probability distribution, {|i⟩} a orthonormal set of party a and {ρb
i } states of party b, we say it is

classical–quantum.
If ρb

i can also be represented in an orthonormal set {|j⟩}, which makes

ρab
= Σipij|i⟩⟨i| ⊗ |j⟩⟨j|,

where {pij} represents a probability distribution for two variables, we say it is classical (or classical–classical).
As we know the correlation in ρab can be quantified by mutual information

I(ρab) = S(ρa)+ S(ρb)− S(ρab),

where S denotes the von Neumann entropy, that is, S(ρ) = −Tr(ρ ln ρ).
We say the correlation in ρab is locally broadcast if there exist two quantum operations Ea

: S(Ha) → S(Ha1 ⊗Ha2) and
Eb

: S(Hb) → S(Hb1⊗Hb2), hereS(H)denotes the set of quantumstates onHilbert spaceH , such thatρab
→ (Ea

⊗Eb)ρab
=

ρa1a2b1b2 , and the amount of correlations in the two reduced states ρa1b1 = Tra2b2ρ
a1a2b1b2 and ρa2b2 = Tra1b1ρ

a1a2b1b2 is
identical to which of ρab, that is

I(ρa1b1) = I(ρa2b2) = I(ρab).
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While suppose there is a quantum operation Ea performed on party a, and we get (Ea
⊗ Ib)ρab

= ρa1a2b, we say the
correlation in ρab is locally broadcast by party a if

I(ρa1b) = I(ρa2b) = I(ρab),

where ρa1b = Tra2ρ
a1a2b and ρa2b = Tra1ρ

a1a2b.
With the above definition, we can then state no-broadcasting theorems for correlation proposed by Piani et al. and Luo

et al.

Theorem 2. The correlation in a bipartite state can be locally broadcast if and only if the state is classical.

Theorem 3. The correlation in the bipartite state ρab can be locally broadcast by party a if and only if ρab is classical–quantum.

2.4. A unified no-cloning theorem from information theoretical point of view

Now we shall build equivalence among the theorems according to the method proposed by Luo (2010b), Luo and Sun
(2010), that is,

Theorem 1 ⇔ Theorem 2 ⇔ Theorem 3.
First we shall establish a lemma.

Lemma 1. Any bipartite state can be decomposed as

ρab
=


k

Xa
k ⊗ Xb

k ,

where each Xa
k is non-negative and {Xb

k } forms a linearly independent set.

Proof. Let {Y a
j } be a linearly independent set for party a, {Zb

k } a linearly independent set for party b. Then any bipartite state
ρab can be decomposed in the basis {Y a

j ⊗ Zb
k }, that is

ρab
=


jk

λjkY a
j ⊗ Zb

k .

Obviously we can let Za
k =


j λjkY

a
j and obtain

ρab
=


k

Za
k ⊗ Zb

k . (38)

Notice that Za
k need not to be non-negative, so we have not arrived at Lemma 1 yet. Starting from (38), we take a fixed

|y⟩ ∈ Hb such that

c1 = ⟨y|Zb
1 |y⟩ ≠ 0,

let ck = ⟨y|Zb
k |y⟩, we can write ρab as

ρab
=


k

Za
k ⊗ Zb

k

=


k

Za
k ⊗ Zb

k +


k≠1

ck
c1

Za
k ⊗ Zb

1 −


k≠1

Za
k ⊗

ck
c1

Zb
1

=


Za
1 +


k≠1

ck
c1

Za
k


⊗ Zb

1 +


k≠1

Za
k ⊗


Zb
k −

ck
c1

Zb
1


= Xa

1 ⊗ Zb
1 +


k≠1

Za
k ⊗

Zb
k ,

where Xa
1 = Za

1 +


k≠1
ck
c1
Za
k and Zb

k = Zb
k −

ck
c1
Zb
1

Because for any k,

⟨y|Zb
k |y⟩ = ⟨y|


Zb
k −

ck
c1

Zb
1


|y⟩ = ck −

ck
c1

c1 = 0,
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together with the non-negative property of density operator ρab, we have for any |x⟩ ∈ Ha

⟨x ⊗ y|ρab
|x ⊗ y⟩ = ⟨x|Xa

1 |x⟩⟨y|Z
b
1 |y⟩ +


k≠1

⟨x|Za
k |x⟩⟨y|

Zb
k |y⟩

= c1⟨x|Xa
1 |x⟩

≥ 0.

Since c1 ≠ 0, we see Xa
1 or −Xa

1 is non-negative depending on the sign of c1. Without loss of generality, we can always
assume Xa

1 to be non-negative, because the negative sign can be absorbed by Zb
1 . Further we see the set {Zb

1 ,
Zb
k } still forms a

linearly independent set.
Now all the Za

i (i ≤ 2) and Zb
1 remain unchanged, and replace Za

1 with Xa
1 , Z

b
j (j ≥ 2) with Zb

j , we can find a |y⟩ ∈ Hb such

that ⟨y|Zb
2 |y⟩ ≠ 0, continue the above process, we would have got Xa

2 which is non-negative. Finally we can replace all the
Za
i ’s with Xa

i ’s and thus the proof is completed.

Next we prove Theorem 1 ⇒ Theorem 3.

Proof. (‘‘if’’ part) Since ρab is a classical–quantum state, it can be rewritten as

ρab
=


i

pi|i⟩⟨i| ⊗ ρb
i ,

where {|i⟩} is a linearly independent set, we can further assume it to be an orthonormal base, otherwise we may need to
append some zero pi. For any state σ ∈ S(Ha), construct a quantum map Ea

: S(Ha) → S(Ha1)⊗ S(Ha2) such that

Ea(σ ) =


i

EiσE
Ď
i (39)

where Ei = |ii⟩⟨i|. Perform E on party a, then we have locally broadcast ρa, and of course the correlation in ρab is locally
broadcast by party a as well.

(‘‘only if’’ part) Suppose the correlation in ρab is locally broadcast by party a through the operator Ea
: S(Ha) →

S(Ha1 ⊗ Ha2), then

ρa1a2b = Ea
⊗ Ib(ρab),

where Ib is the identity operator on Hb. We have

I(ρa1b) = I(ρa2b) = I(ρab).

Denote the operator T
a1a2
a2 : S(Ha1 ⊗ Ha2) → S(Ha1) as the partial tracing operator by tracing out a2, thus

ρa1b = (T a1a2
a2 ⊗ Ib)(ρa1a2b) = T a1a2

a2 Ea
⊗ Ib(ρab).

According to the condition

I(ρa1b) = I(ρab),

and notice that I(ρab) = S(ρab
|ρa

⊗ ρb), where S is the relative entropy, ρa and ρb stand for reduced states, we have

S(T a1a2
a2 Ea

⊗ Ib(ρab)|T a1a2
a2 Ea

⊗ Ib(ρa
⊗ ρb)) = S(ρab

|ρa
⊗ ρb). (40)

Now we shall introduce a theorem stating that (Lindblad, 1975)

S(ρ|σ) ≥ S(E(ρ)|E(σ )) (41)

for any quantum state ρ and σ , and any quantum map E : S(H) → S(K).
The equality holds if and only if there exists an operator F : S(K) → S(H) such that

F E(ρ) = ρ, F E(σ ) = σ .

An explicit form of F is, see (Hayden et al., 2004),

F (τ ) = σ 1/2EĎ((E(σ ))−1/2τ(E(σ ))−1/2)σ 1/2, τ ∈ S(K). (42)

Apply (41) to (40), we know there exists an operator F a1b such that

F a1b(T a1a2
a2 Ea

⊗ Ib)(ρab) = ρab,

F a1b(T a1a2
a2 Ea

⊗ Ib)(ρa
⊗ ρb) = ρa

⊗ ρb.
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Consider the explicit form of F a1b from (42) and the product structure of ρa
⊗ ρb, we can express F a1b as F a1 ⊗ Ib, hence

(F a1 ⊗ Ib)(T a1a2
a2 Ea

⊗ Ib)(ρab) = ρab.

Use Lemma 1, we obtain

ρab
=


i

Xa
i ⊗ Xb

i ,

where Xa
i is non-negative, {Xb

i } constitutes a linearly independent set, thus
i

F a1T a1a2
a2 Ea(Xa

i )⊗ Xb
i =


i

Xa
i ⊗ Xb

i ,

since {Xb
i } is a linearly independent set, we have

F a1T a1a2
a2 Ea(Xa

k ) = Xa
k , ∀k.

So {Xa
i } is broadcastable, due to Theorem 1, Xa

i ’s commute with each other, and hence can be diagonalized by the same basis
{|i⟩}, now we obtain

ρab
=


i

λi|i⟩⟨i| ⊗ Y b
i ,

it can be easily proved that Y b
i is non-negative, and hence ρab is indeed a classical–quantum state.

Now we prove Theorem 3 ⇒ Theorem 2.

Proof. We shall prove only the non-trivial part. Suppose the correlation in ρab can be locally broadcast by two operators
respectively performed on party a and b:

Ea
: S(Ha) → S(Ha1 ⊗ Ha2),

Eb
: S(Hb) → S(Hb1 ⊗ Hb2),

then we obtain

ρa1a2b1b2 = (Ea
⊗ Eb)ρab

= (Ia1a2 ⊗ Eb)(Ea
⊗ Ib)ρab.

So we have decomposed the operation Ea
⊗ Eb into two steps, each of which only deals with a single party. Through step

one, we obtain

S(ρab
|(ρa

⊗ ρb)) ≥ S(Ea(ρab)|Ea(ρa
⊗ ρb)),

that is, I(ρab) ≥ I(ρa1a2b), since I(ρa1a2b) ≥ I(Tra2ρ
a1a2b) = I(ρa1b), we have

I(ρa1b) ≤ I(ρa1a2b) ≤ I(ρab).

Similarly, through step two, we obtain

I(ρa1b1) ≤ I(ρρ
a1b1b2

) ≤ I(ρa1b).

With the condition I(ρa1b1) = I(ρab), we have I(ρa1b) = I(ρab), which shows that the correlation in ρab is broadcast by
party a, from Theorem 3, we know ρab is a classical–quantum state. Exchange a and b in the above discussion, it is obvious
that ρab is also a quantum–classical state. So ρab is a classical state.

Next we prove Theorem 2 ⇒ Theorem 1.

Proof. Again we shall only prove the non-trivial part. Suppose there exists a quantum operation Eb which can broadcast a
set of states {ρb

i }. We can find a orthonormal set {|i⟩} and construct a composite system

ρab
=


i

pi|i⟩⟨i| ⊗ ρb
i ,

where {pi} is a probability distribution. The party a can be easily broadcast by the operator Ea form (39), together with Eb,
ρab can be locally broadcast, so is the correlation. Thus from Theorem 2, ρab is a classical state, then ρb

i commutes with each
other.

From the above discussions, we have created a chain of equivalence among the three theorems: Theorem 1⇔ Theorem 2
⇔ Theorem 3. This has provided us with a unified picture of the no-broadcasting theorem in quantum systems from the
information theoretical point of view.
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2.5. No-cloning and no-signaling

According to Einstein’s relativity theory, superluminal signaling cannot be physically realized. Yet due to the non-local
property of quantum entanglement, superluminal signaling is possible provided perfect cloning machine can be made. The
scheme has been well-known since Herbert (1982) first proposed his ‘‘FLASH’’ in 1982. The idea is as follows: suppose Alice
and Bob, at an arbitrary distance, share a pair of entangled qubits in the state |ψ⟩ = (1/

√
2)(|01⟩−|10⟩). Alice canmeasure

her qubit by either σx or σz . If the measurement is σz , Alice’s qubit will collapse to the state |0⟩ or |1⟩, with probability
50%. Respectively, this prepares Bob’s qubit in the state |1⟩ or |0⟩. Without knowing the result of Alice’s measurement, the
density matrix of Bob’s qubit is 1

2 |0⟩⟨0| +
1
2 |1⟩⟨1| =

1
2 I . On the other hand, if Alice’s measurement is σx, Alice’s qubit will

collapse to the state |ϕx+⟩ or |ϕx−⟩, where |ϕx+⟩ = 1/
√
2(|0⟩ + |1⟩), |ϕx−⟩ = 1/

√
2(|0⟩ − |1⟩), being eigenvectors of σx.

Thus Bob’s qubit is prepared in the state |ϕx−⟩ or |ϕx+⟩ respectively, in this case the density matrix of Bob’s qubit is still
1
2 |ϕx+⟩⟨ϕx+| +

1
2 |ϕx−⟩⟨ϕx−| =

1
2 I . Obviously, Bob gets no information about which measurement is made by Alice. While,

if perfect cloning is allowed, the scenario will change. Bob can use the cloning machine to make arbitrarily many copies of
his qubit, in which way he is able to determine the exact state of his qubit, that is, whether an eigenstate of σz or σx. With
this information, Bob knows the measurement Alice has taken. Fortunately, since no-cloning theorem has been proved,
the above superluminal signaling scheme cannot be realized, which leaves theory of relativity and quantum mechanics in
coexistence.

Up to now, there are many cloning schemes found, naturally one may ask, whether it is possible by using imperfect
cloning, to extract information about which measuring basis Alice has used. According to the property of quantum trans-
formation, the answer is no. To see this, we may first consider a simple scheme, that is, Bob can use the universal quantum
cloning machine (UQCM) proposed by Bužek and Hillery (1996) to process his qubit. The UQCM transformation reads,

|0⟩|Q ⟩ →


2
3
|00⟩|↑⟩ +


1
3
|+⟩|↓⟩,

|1⟩|Q ⟩ →


2
3
|11⟩|↓⟩ +


1
3
|+⟩|↑⟩,

where |Q ⟩ is the original state of the copying-machine, |+⟩ and |−⟩ are two orthogonal states of the output, |+⟩ =
1

√
2
(|01⟩ + |10⟩), |−⟩ =

1
√
2
(|01⟩ − |10⟩), and |↑⟩, |↓⟩ are the ancillary states which are orthogonal to each other. If Al-

ice chooses σz , the density matrix of Bob’s qubit after the process is

ρb =
1
2


2
3
|00⟩⟨00| +

1
3
|+⟩⟨+|


+

1
2


2
3
|11⟩⟨11| +

1
3
|+⟩⟨+|


=

1
3
(|00⟩⟨00| + |11⟩⟨11| + |+⟩⟨+|).

If Alice chooses σx, it can be easily verified that the densitymatrix will not change, thus no information can be gained by Bob.
In fact, Bruß et al. have pointed out in Bruß et al. (2000b) that the density matrix of Bob’s qubit will not change no matter
what operation is taken on it, as long as the operation is linear and trace-preserving. Suppose the original density matrix
shared between Alice and Bob is ρab, and Alice has done a measurement Am on her qubit, Bob makes a transformation B on
his, then the shared density matrix becomes Am ⊗ B(ρab), here m specifies which measurement Alice has taken. In Bob’s
view, with the linear and trace-preserving property of Am, the density matrix of his qubit is

tra(Am ⊗ B(ρab)) = Btra(Am ⊗ I(ρab))

= Btra(ρab).

Note that tr and Tr both denote trace similarly in this review. Here we see that the density matrix of Bob’s qubit has nothing
to do with Alice’s measurement Am, therefore no information is transferred to Bob. Note that to get the above conclusion,
we have only used the linear and trace-preserving property of Am. Since any quantum operator is linear and completely
positive, no-signaling should always hold, thus providing a method to determine the fidelity limit of a cloning machine.

The situation might be more complicated when the no-signaling correlation is considered. It is found that, however, no-
signaling might be more non-local than that of quantummechanics. Then it seems that besides of no-signaling, some extra
principle, like local orthogonality (Fritz et al., 2013), should be satisfied such that the no-signaling non-locality might be
realizable by quantum mechanics (Popescu, 2014).

Gisin studied the case of 1 → 2 qubit UQCM in Gisin (1998). We continue the scheme that Alice and Bob share a pair of
entangled states. Now Alice has done some measurement by σx or σz , and thus Bob’s state has been prepared in a respect
mixed state. Let there be a UQCM, suppose the input density matrix is |ϕ⟩⟨ϕ| =

1
2 (I +m · σ), withm being the Bloch vector

of |ϕ⟩, then after cloning the reduced state on party a and b should read, ρa
= ρb

= (1+ ηm · σ), yielding the fidelity to be
F = (1 + η)/2. According to the form of ρa and ρb, the composite output state of the cloning machine should be

ρout
=

1
4


I4 + η(m · σ ⊗ I + I ⊗ m · σ)+


i,j=x,y,z

tijσi ⊗ σj


.
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The universality of UQCM requires

ρout(Um) = U ⊗ Uρout(m)UĎ
⊗ UĎ. (43)

The no-signaling condition requires

1
2
ρout(+x)+

1
2
ρout(−x) =

1
2
ρout(+z)+

1
2
ρout(−z), (44)

where ρout(+z) represents the output state of the UQCM under the condition that Alice has take the measurement σx and
got result +.

Also we should notice that ρout must be positive. Putting the positive condition together with (43) and (44), we shall get
η ≤

2
3 (F ≤

5
6 ). Although we have found an upper bound of F , the question remains whether it can be reached. But we know

it can be, since a practical UQCM scheme with F =
5
6 has been proposed (Bužek and Hillery, 1996).

Navez et al. have derived the upper bound of fidelity for d-dimensional 1 → 2 UQCM using no-signaling condition
(Navez and Cerf, 2003), and the bound also has been proved to be tight. Simon et al. have shown how no-signaling condition
together with the static property of quantum mechanics can lead to properties of quantum dynamics (Simon et al., 2001).
By static properties we mean: (1) The states of quantum systems are described as vectors in Hilbert space. (2) The usual
observables are represented by projections in Hilbert space and the probabilities for measurement are described by the
usual trace rule. The two properties with no-signaling condition shall imply that any quantum map must be completely
positive and linear, which is what we already have inmind. Thismay help to understandwhy bound derived by no-signaling
condition is always tight. The experimental test of the no-signaling theorem is also performed in optical system (De Angelis
et al., 2007). Fromno-signaling condition, themonogamy relation of violation of Bell inequalities can be derived, and this can
be used to obtain the optimal fidelity for asymmetric cloning (Pawlowski and Brukner, 2009). And some general properties
of no-signaling theorem are presented in Masanes et al. (2006). The relationship between optimal cloning and no signaling
is presented in Ghosh et al. (1999). The no-signaling is shown to be related with optimal state estimation (Han et al., 2010).
Also the no-signaling is equivalent to the optimal condition in minimum-error quantum state discrimination (Bae et al.,
2011), more results of those topics can be found in Bae and Hwang (2012) for qubit case and (Bae, 2012b) for the general
case. The optimal cloning of arbitrary fidelity by using no-signaling is studied in Gedik and Çakmak (2012).

2.6. No-cloning for unitary operators

No-cloning is a fundamental theorem in quantum information science and quantummechanics. It may be manifested in
various versions. Simply by calculation, and with the help of definition of CNOT gate, we may find the following relations,

CNOT(σx ⊗ I)CNOT = σx ⊗ σx,

CNOT(σz ⊗ I)CNOT = σz ⊗ I,
CNOT(I ⊗ σx)CNOT = I ⊗ σx,

CNOT(I ⊗ σz)CNOT = σz ⊗ σz . (45)

It implies that the bit flip operation is copied forwards (from first qubit to second qubit), while the phase flip operation is
copied backwards. But we cannot copy simultaneously the bit flip operation and phase flip operation. Those properties are
important for methods of quantum error correction and fault-tolerant quantum computation (Gottesman, 1998). This is a
kind of no-cloning theorem for unitary operators. The quantum cloning of unitary operators is investigated in Chiribella
et al. (2008).

2.7. Other developments and related topics

As a basic and fundamental theorem of quantum information and quantummechanics, no-cloning is related with many
topics and has various applications. In the following, we try to list some of those developments and closely related topics.

• We may wonder what is the classical counterpart of no-cloning theorem in quantum world. Some results are available.
Different from quantum case, classical broadcasting is possible with arbitrary high resolution (Walker and Braunstein,
2007). The difference between quantum copying and classical copying is studied in Shen et al. (2011), see also Fenyes
(2012). The classical no-cloning is also discussed (Daffertshofer et al., 2002).

• The nonclassical correlations such as entanglement are also fundamental phenomena in the quantum world. They can
be related with no-cloning theorem. The no-cloning theorem for entangled states is shown in Koashi and Imoto (1998).
No-cloning theoremprohibits perfect copying of nonorthogonal states, but as to orthogonal ones, it says if we are allowed
to use arbitrary unitary transformations, cloning of them can be deterministically done. However, related with entan-
glement cloning, it is shown that even orthogonal states in composite systems cannot be cloned (Mor, 1998), related
results are also available in Goldenberg and Vaidman (1996) and Peres (1996a). It is also shown that no-cloning theorem
is, in principle, equivalent with no-increasing of entanglement (Horodecki and Horodecki, 1998). By studying quantum
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correlation beyond quantum entanglement, the equivalence between locally broadcastable and broadcastable is inves-
tigated in Wu and Guo (2011), see a review about quantumness of correlations (Modi et al., 2012). The combination of
no-cloning, no-broadcasting and monogamy of entanglement can be found in Leifer (2006).

• The no-cloning theorem can be described in other environments and can be applied to other cases. Some of those re-
sults are the following. The no-signaling principle and the state distinguishability is studied in Bae (2012a). The linear
assignment maps for correlated system–environment states is studied in Rodriguez-Rosario et al. (2010), the connection
between the violation of the positivity of this linear assignments and the no-broadcasting theorem is found. The transfor-
mationswhich preserve commutativity of quantum states are studied in Nagy (2009). Relatedwith quantum cloning, the
quantum channels are studied in Bradler (2011). No-cloning theoremmeans that two copies cannot be obtained out of a
single copy, and ifwe study the information contentmeasured byHolevo quantity of one copy and two copies, a condition
of states broadcasting can be obtained (Horodecki et al., 2006). No-cloning can also be related with bounds on quantum
capacity (Janzing and Steudel, 2007). The no-cloning studied by wave-packet collapse of quantum measurement is pre-
sented by Luo (2010a). It is also pointed out that no-cloning of non-orthogonal states does not necessarily mean that
inner product of quantum states should preserve (Li et al., 2005b). We remark that no-cloning theorem is also pioneered
in Dieks (1982), Yuen (1986), interested readers could check them for reference, see also Wootters and Zurek (2009).

• Since the first version of no-cloning theorem, either inspiration is drawn from it, or generalizations aremade, some simi-
lar ‘‘no-’’ theorems comeup,whichwe shall list as below. (1) No-deleting. Being a reverse process of quantumcloning, it is
pointed out that it is also impossible to delete an unknown quantum state (Pati and Braunstein, 2000). (2) No-imprinting.
See Bennett et al. (1992), related results can also be found in Koashi and Imoto (2002). (3) No-stretching, which is a geo-
metrical interpretation of no-cloning theorem (D’Ariano and Perinotti, 2009). (4) No-splitting, which states that quantum
information cannot be split into complementary parts (Zhou et al., 2006). The impossibility of reversing or complement-
ing an unknown quantum state is a generalization of no-cloning theorem (Li et al., 2005a).

• Finally, let us remark some applications of no-cloning theorem. We know that no-cloning theorem plays a key role in
quantum cryptography, which is close to practical industrialization. Quantum key distribution (QKD), such as the BB84
protocol (Bennett and Brassard, 1984), provides the unconditional security for secrete key sharing. The security of the
quantum key distribution is based on no-cloning theorem since if we can copy perfectly the transferred state, we can
always find its exact form by copying it to infinite copies so that its exact form can be found. For quantum cryptogra-
phy protocol E91 (Ekert, 1991), the security is based on the violation of Bell inequality (Bell, 1964). The unified picture
of no-broadcasting theorem unifies those theorems together. This result is also shown in Acín et al. (2004a). The study
of quantum cryptography, on the other hand, suggests that the ultimate physical limits of privacy might be possible
under very weak assumptions (Ekert and Renner, 2014). One recent development may include that probabilistic super-
replication of quantum information, a different version of quantum cloning with limited aim, is possible (Chiribella et al.,
2013). Remarkably, these phenomena can be applied to achieve the ultimate limit of precision in metrology provided by
quantummechanics, which is the Heisenberg limit of quantummetrology.Wewould like to emphasize that the quantum
cloning can be applied in quantum computation (Galvao and Hardy, 2000).

3. Universal quantum cloning machines

As we have shown in last section, there are various no-cloning theorems implied by the law of quantum mechanics.
They imply that one cannot clone an arbitrary qubit perfectly. On the other hand, the approximate quantum cloning is not
prohibited. So it is possible that one can get several copies that approximate the original state, with fidelity F < 1. Hence
one naturally raises a question: can we achieve the same fidelity for any state on the Bloch sphere, for the qubit case, or
more generally, for any state in a d-dimensional Hilbert space? And what is the best fidelity we can get?

A cloning machine that achieves equal fidelity for every state is called a universal quantum cloning machine (UQCM).
This problem is equivalent to distribute information to different receivers, and it is natural to require the performance is
the same for every input state, since we do not have any specific information about the input state ahead. According to no-
cloning theorem, it is expected that the original input statewill be destroyed and become as one of the output copies. For the
simplest case, one qubit is cloned to have two copies, those two copies can be identical to each other, i.e., they are symmetric
and of course they are different from the original input state. On the other hand, those two copies can also be different, both
of them are similar to the original input state butwith different similarities, wemean that they are asymmetric. In this sense,
there are symmetric and asymmetric UQCMs.

3.1. Symmetric UQCM for qubit

Consider a quantum cloning from 1 qubit to 2 qubits, a trivial scheme can be simply constructed as following:
(1), Measure the input state |a⃗⟩ in a random base |b⃗⟩. Here the vectors are on the Bloch sphere S2. The probability of

obtaining result |±b⃗⟩ is p± =


1 ± a⃗ · b⃗


/2.

(2), Thenduplicate the state |±b⃗⟩ according to themeasurement result. The fidelity is F+ = |⟨a⃗|+b⃗⟩|2 and F− = |⟨a⃗|−b⃗⟩|2,
respectively.
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In an average sense, the fidelity is

Ftrivial =


S2

p+F+ + p−F− =
1
2

+
1
2


S2


a⃗ · b⃗

2
db⃗ =

2
3
. (46)

The problem is: can we design a better cloning machine? Bužek and Hillery (1996) proposed an optimal UQCM, namely,
a unitary transformation on a larger Hilbert space:

U|0⟩1|0⟩2|0⟩R =


2
3
|0⟩1|0⟩2|0⟩R +


1
6
(|0⟩1|1⟩2 + |1⟩1|0⟩2)|1⟩R, (47)

U|1⟩1|0⟩2|0⟩R =


2
3
|1⟩1|1⟩2|1⟩R +


1
6
(|0⟩1|1⟩2 + |1⟩1|0⟩2)|0⟩R. (48)

On the l.h.s of the equations, the first qubit 1 is the input state, the second is a blank state and the third with subindex R
is the ancillary state of the quantum cloning machine itself. By a unitary transformation which is demanded by quantum
mechanics, we find the output state on the r.h.s. of the equations. We may find that the original qubit is destroyed and
becomes as one of the output qubit in 1 while the blank state is now changed as another copy in party 2, the ancillary state
Rmay or may not be changed which will be traced out for the output. It is obvious that two output states are identical, so it
is a symmetric quantum cloning machine.

For an arbitrary normalized pure input state |ψ⟩ = a|0⟩+ b|1⟩, since quantummechanics is linear, by applying U on the
state which is realized simply by following the above cloning transformation, we can find the copies. After tracing out the
ancillary state, the output density matrix take the form:

ρout =
2
3
|ψ⟩⟨ψ | ⊗ |ψ⟩⟨ψ | +

1
6
(|ψ⟩|ψ⊥

⟩ + |ψ⊥
⟩|ψ⟩)(⟨ψ |⟨ψ⊥

| + ⟨ψ⊥
|⟨ψ |). (49)

Here |ψ⊥
⟩ = b∗

|0⟩−a∗
|1⟩ is orthogonal to |ψ⟩. We can further trace out one of the two states to get the single copy density

matrix

ρ1 = ρ2 =
2
3
|ψ⟩⟨ψ | +

1
6
I. (50)

Note this densitymatrix is of the form η|ψ⟩⟨ψ |+
1−η
d I with η called the ‘‘shrinking factor’’. This form is a linear combination

of the original density matrix |ψ⟩⟨ψ | and the identity I which corresponds to completely mixed state and it is like a white
noise.

In fact, in the original papers, the efficiency of the cloning machine is described by Hilbert–Schmidt norm d2HS =

Tr[(ρin − ρout)
Ď(ρin − ρout)], which also quantifies the distance of two quantum states. The fidelity is a general accepted

measure of merit of the quantum cloning (Kwek et al., 2000). We will generally use fidelity as the measure of the quality of
the copies in this review.

We can obtain the single copy fidelity

F1 = ⟨ψ |ρ1|ψ⟩ =
5
6
, (51)

and the two copies fidelity (global fidelity),

F2 =
⊗2

⟨ψ |ρ1|ψ⟩
⊗2

=
2
3
. (52)

The single copy fidelity provides measure of similarity between state ρ1 and the original input state. If it is one, those two
states are completely the same, while if it is zero, those two states are orthogonal. One point may be noticed is that, the
fidelity between a completely mixed state with |ψ⟩ is 1/2. We know that a completely mixed state contains nothing about
the input state, so fidelity 1/2 should be the farthest distance between two quantum states. Similarly, the global fidelity
quantifies the similarity between the two-qubit output state with the ideal cloning case. If it is one, we have two perfect
copies. We remark that the single copy fidelity does not depend on input state, so the quality of the copies has the state-
independent characteristic. In this sense, the corresponding cloning machine is ‘‘universal’’. One may find that the above
presented cloning machine achieves higher fidelity than the trivial one, and it is proved to be optimal (Gisin and Massar,
1997; Bruß et al., 1998a; Gisin, 1998).

Gisin and Massar (1997) then generalize the cloning machine to N → M case, that is M copies are created from N
identical qubits. Their cloning machine is a transformation:

|Nψ⟩|R⟩ →

M−N
j=0

αj|(M − j)ψ, jψ⊥
⟩|Rj⟩ (53)

where

αj =


N + 1
M + 1


(M − N)!(M − j)!
(M − N − j)!M!

(54)
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and |(M − j)ψ, jψ⊥
⟩ denote the normalized symmetric state with M − j states |ψ⟩ and j states |ψ⊥

⟩. Then the single copy
fidelity is

F =
M(N + 1)+ N

M(N + 2)
. (55)

In Gisin andMassar (1997) the optimality of this cloningmachine is proved for casesN = 1, 2, . . . , 7. The complete proof
of the optimality is finished in Bruß et al. (1998b)where the connection between optimal quantum cloning and optimal state
estimation is established. The upper bound of N to M UQCM is found to be exactly equal to (55), hence Gisin and Massar
UQCM is optimal.

3.2. Symmetric UQCM for qudit

For further generalization, we may seek cloning machine for d-level systems. Bužek and Hillery proposed a 1–2 d-
dimensional UQCM (Bužek and Hillery, 1999, 1998): for a basis state |i⟩, the transformation is

|i⟩|0⟩|R⟩ →
2

√
2(d + 1)

|i⟩|i⟩|Ri⟩ +
1

√
2(d + 1)


i≠j

(|i⟩|j⟩ + |j⟩|i⟩)|Rj⟩. (56)

Here |Ri⟩ is a set of orthogonal normalized ancillary state. The resultant one copy fidelity is, F = (d + 3)/(2d + 2).
Later, a general N to M UQCM is constructed in a concise way by Werner (1998), see also Zanardi (1998) for related

results. For N identical pure input state |ψ⟩, the output density matrix is:

ρout =
d[N]

d[M]
sM

(|ψ⟩⟨ψ |)⊗N

⊗ I⊗(M−N) sM (57)

where d[N] =


d+N−1

N


, (we also use notation d[N] = CN

d+N−1), and sM is the projection onto the symmetric subspace of

H⊗M . As an example,

s2 = |00⟩⟨00| + |11⟩⟨11| +
1
2
(|01⟩ + |10⟩)(⟨01| + ⟨10|). (58)

If we insert this expression into formula (57), we can get exactly the expression of output density matrix (49). So this UQCM
can recover the N = 1,M = 2, d = 2 one.

For N to M case, the single copy fidelity is shown to be

F1 =
d[N]

d[M]
Tr


|ψ⟩⟨ψ | ⊗ I⊗(M−1) sM (|ψ⟩⟨ψ |)⊗N
⊗ I⊗(M−N) sM

=
N(M + d)+ M − N

M(N + d)
. (59)

In Werner (1998), this single copy fidelity is proved to be optimal under the restriction that the operation is a mapping into
the symmetric Hilbert space. Generally, there might exist a cloning machine performing better without this constraint. Keyl
and Werner studied the more general case and proved this cloning machine is indeed the unique optimal UQCM (Keyl and
Werner, 1999). As a special case, if we let N = 1, M = 2, the fidelity apparently reduces to the Bužek and Hillery 1–2 d-
dimensional UQCM: F = (d+3)/(2d+2). And if we take theM → ∞ limit, the fidelity turns out to be F = (N+1)/(N+d),
this agrees with the state estimation result by Massar and Popescu (1995).

We are also interested in theM copies fidelity (global fidelity), it can be found as follows (Werner, 1998),

FM =
d[N]

d[M]
tr

(|ψ⟩⟨ψ |)⊗M sM


(|ψ⟩⟨ψ |)⊗N

⊗ I⊗(M−N) sM
=

d[N]

d[M]
tr

(|ψ⟩⟨ψ |)⊗M

=
d[N]

d[M]
=

M!(N + d − 1)!
N!(M + d − 1)!

. (60)

The fidelity (59) quantifies the similarity between a single copy from the output state and one input state, while the global
fidelity (60) quantifies the similarity between the whole M copies of the output and the ideal M copies of the input state
|ψ⟩. More generally, we may consider to choose arbitrary L copies from the output state and quantify how closeness of this
state with L ideal copies of the input state |ψ⟩. Recently, Wang et al. (2011b) proposed a more general definition ‘‘L copies
fidelity’’: FL =

⊗L
⟨ψ |ρout,L|ψ⟩

⊗L where ρout,L is the L copies output reduced density matrix. The expression is calculated as,

FL =
(d + N − 1)!(M − N)!(M − L)!

(d + M − 1)!M!N!
×


m1

(M − m1 + d − 2)!(m1!)
2

(m1 − L)!(m1 − N)!(d − 2)!(M − m1)!
. (61)
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For L = 1 and L = M , the expression will reduce to results presented above (59) and (60). For another special case N = 1,
expression of fidelity can be simplified by finding the explicit result of the summation, it reads,

FL(N = 1) =
L!d![L(d + M)+ M − L]

(d + L)!M
. (62)

Fan et al. (2001a) proposed another version of UQCM, written in more explicit form: let n = (n1, . . . , nd) denote a d-
component vector. And |n⟩ = |n1, . . . , nd⟩ is a completely symmetric and normalized state with ni states in |i⟩. These states
is an orthogonal normalized basis of the symmetric Hilbert space H⊗M

+ . Then for an arbitrary input state |ψ⟩ =
d

i=1 xi|i⟩,
the N-fold direct product |ψ⟩

⊗N could be expanded as:

|ψ⟩
⊗N

=

N
n


N!

n1! . . . nd!
xn11 . . . x

nd
d |n⟩. (63)

The cloning transformation takes the form,

|n⟩|R⟩ →

M−N
j

αnj |n + j⟩|Rj⟩. (64)

The notation
N

n means summation over all possible vectors n with n1 + · · · + nd = N and the |Rj⟩ is a set of orthogonal
normalized ancillary states, as usual. The coefficients αnj are:

αnj =


(M − N)!(N + d − 1)!

(M + d − 1)!

 d
k=1

(nk + jk)!
nk!jk!

. (65)

This UQCM can achieve the same fidelities as the UQCM given by Werner (1998). It is optimal. Later Wang et al. (2011b)
proved that these two cloning machines are indeed equivalent by showing the output states are the same. First, divide the
symmetric state |m⃗⟩ ofM qudits into two parts with N qudits andM − N qudits, respectively,

|m⃗⟩ =
1
CN
M

M−N
k⃗


j


mj!

(mj − kj)!kj!
|m⃗ − k⃗⟩|k⃗⟩. (66)

The symmetry operator sM can be reformulated. After calculation, output density matrix in (57) is shown to be:

ρout =
N!(M − N)!(N + d − 1)!

(M + d − 1)!

M
m⃗,m⃗′

|m⃗⟩⟨m⃗′
| ×

M−N
k⃗


j

x
mj−kj
j x∗(m′

j−kj)

mj!m′

j!

(mj − kj)!(m′

j − kj)!kj!

 . (67)

For the cloning machine (64), we can get the output density matrix after tracing out the ancillary state:

ρ ′out
=

N!(M − N)!(N + d − 1)!
(M + d − 1)!

η2
N

n⃗,n⃗′

M−N
k⃗

|n⃗ + k⃗⟩⟨n⃗′
+ k⃗| ×


j

x
nj
j x

∗(n′
j)

j


(nj + kj)!(n′

j + kj)!

nj!n′

j!kj!

 . (68)

These two expressions are apparently equivalent.
In Wang et al. (2011b), a unified form of the symmetric UQCM is presented, up to an unimportant overall normalization

factor, the transformation is,

|ψ⟩
⊗N

|Φ+
⟩
⊗(M−N)

→

sM ⊗ I⊗(M−N)

⊗ I⊗N
|ψ⟩

⊗N
|Φ+

⟩
⊗(M−N). (69)

This cloningmachine is realized by superposition of states in which some of the input states are permutated into one part of
the maximally entangled states. Since sM = sM(I⊗N

⊗ sM−N), and the mapping of sM−N on theM − N maximally entangled
states is: (sM−N ⊗ IM−N)|Φ+

⟩
⊗(M−N), the cloning transformation may be rewritten as:

sM ⊗ I⊗(M−N)
|n⃗⟩|Φ+

⟩
⊗(M−N)

=

sM ⊗ I⊗(M−N)

|n⃗⟩
M−N

k⃗

|k⃗⟩|k⃗⟩

=

M−N
k⃗


j

(nj + kj)!
nj!kj!

|n⃗ + k⃗⟩|k⃗⟩. (70)
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In fact this coincides with the UQCM (64). Here the complicated coefficients (65) proposed for optimal cloning machine
can be naturally obtained. Also it can be simply seen that the transformation (69) is equivalent to the construction (57) if
the ancillary states are traced out. So the UQCM can be simply constructed, we can symmetrize the N input pure states
and halves of some maximally entangled states, while other halves of the maximally entangled states are ancillary states.
This simplify dramatically the construction of the UQCM theoretically and its physical implementation becomes easier. If
maximally entangled states are available, the UQCM is to symmetrize the input pure states with one sides of the maximally
entangled states. Indeed, some experiments follow this scheme (Lamas-Linares et al., 2002)whichwewill review in physical
realization section.

3.3. Asymmetric quantum cloning

In the previous subsections we are considering symmetric cloning machines which provide identical output copies.
However, naturally we may try to distribute information unequally among the copies. The 1 to 2 optimal asymmetric qubit
cloner is found by Niu and Griffiths (1998), Cerf (2000b) and Bužek et al. (1998). Their formalisms are slightly different, but
they lead to a same relation between A’s fidelity FA and B’s fidelity FB:

(1 − FA)(1 − FB) ≥ FA + FB −
3
2
. (71)

So a tradeoff relation exists for the two fidelities, if one fidelity is large, correspondingly another fidelity will become small.
This will be presented further in the following.

The transformation can be written in the following form according to Bužek et al. (1998):

|ψ⟩A(a|Φ+
⟩BR + b|0⟩B(|0⟩R + |1⟩R)/

√
2) → a|ψ⟩A|Φ

+
⟩BR + b|ψ⟩B|Φ

+
⟩AR. (72)

Here R is an ancillary state, |Φ+
⟩ = (|00⟩+ |11⟩)/

√
2 is a Bell state. And the normalization condition of input state requires

a2 + ab + b2 = 1, which is an ellipse equation. The reduced density matrix of A and B are: ρA,B = FA,B|ψ⟩⟨ψ | + (1 −

FA,B)|ψ⊥
⟩⟨ψ⊥

|, here

FA = 1 − b2/2, FB = 1 − a2/2, (73)

which is just the fidelity of A and B, respectively. It is easy to check (73) satisfy the inequality (71). And as special cases, we
can see if a = 0, then FA = 1, FB = 1/2, hence the information all goes to A, and for B it is all the same. If a2 = b2 = 1/3,
then it reduces to symmetric UQCM case, with fidelity FA = FB = 5/6.

For completeness, here we would like to present a slightly different form for the asymmetric quantum cloning which is
named by Cerf as a Pauli channel (Cerf, 2000b). We start from qubit case. An arbitrary quantum pure state takes the form,

|ψ⟩ = x0|0⟩ + x1|1⟩,


j

|xj|2 = 1. (74)

A maximally entangled state is written as

|Ψ+
⟩ =

1
√
2
(|00⟩ + |11⟩). (75)

We can write the complete quantum state of three particles as

|ψ⟩A|Ψ
+
⟩BC =

1
2
[|Ψ+

⟩AB|ψ⟩C + (I ⊗ X)|Ψ+
⟩ABX |ψ⟩C + (I ⊗ Z)|Ψ+

⟩ABZ |ψ⟩C + (I ⊗ XZ)|Ψ+
⟩ABXZ |ψ⟩C ], (76)

where I is the identity, X, Z are two Pauli matrices and XZ is another Pauli matrix up to a whole factor i.
Denote the unitary transformation Um,n = XmZn, where m, n = 0, 1, and the relation (76) can be rewritten as

|ψ⟩A|Ψ
+
⟩BC =

1
2


m,n

(I ⊗ Um,−n ⊗ Um,n)|Ψ
+
⟩AB|ψ⟩C . (77)

Here we remark that Z−1
= Z for 2-level system. We write it in this form since this relation can be generalized directly to

the general d-dimension system.
Now, suppose we do unitary transformation in the following form

α,β

aα,β(Uα,β ⊗ Uα,−β ⊗ I)|ψ⟩A|Ψ
+
⟩BC

=
1
2


α,β,m,n

(Uα,β ⊗ Uα,−βUm,−n ⊗ Um,n)|Ψ
+
⟩AB|ψ⟩C

=


m,n

bm,n(I ⊗ Um,−n ⊗ Um,n)|Ψ
+
⟩AB|ψ⟩C , (78)
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where we defined

bm,n =
1
2


α,β

(−1)αn−βmaα,β . (79)

The amplitudes should be normalized


α,β |aα,β |2 =


m,n |bm,n|2 = 1. This is actually the asymmetric quantum cloning
machine introduced by Cerf (2000b). We can find the quantum states of A and C now take the form

ρA =


α,β

|aα,β |2Uα,β |ψ⟩⟨ψ |UĎ
α,β , (80)

ρC =


m,n

|bm,n|2Um,n|ψ⟩⟨ψ |UĎ
m,n. (81)

The quantum state of A is related with the quantum state C by relationship between aα,β and bm,n.
The quantum state ρA is the original quantum state after the quantum cloning. The quantum state ρC is the copy.
Now, let us see a special case,

b0,0 = 1, b0,1 = b1,0 = b1,1 = 0. (82)

Correspondingly, we can choose

a0,0 = a0,1 = a1,0 = a1,1 =
1
2
. (83)

So, we know the quantum states of A and C have the form

ρA =
1
2
I, ρC = |ψ⟩⟨ψ |. (84)

As a quantum cloning machine, this means the original quantum state in A, |ψ⟩, is completely destroyed,
These results can be generalized to d-dimension system directly.
The asymmetric cloningmachinewas generalized to d-dimensional case by Braunstein et al. (2001b). The setup is almost

the same with |Φ+
⟩ instead defined in higher-dimension, |Φ+

⟩ =
1

√
d

d
j=1 |jj⟩, and hence the normalization relation is

a2 + b2 + 2ab/d = 1. The output reduced density matrices are written in the form with shrinking factor:

ρA = (1 − b2)|ψ⟩⟨ψ | + b2
I
d
, ρB = (1 − a2)|ψ⟩⟨ψ | + a2

I
d
. (85)

Hence the fidelities are:

FA = 1 − b2
d − 1
d

, FB = 1 − a2
d − 1
d

. (86)

If a2 = b2 = d/(2d + 2), it reduces to the symmetric 1–2 d-dimensional UQCM case, with fidelity (d + 3)/(2d + 2). A
trade-off relation between FA and FB can be found as follows (Jiang and Yu, 2010a):

(
√
(d + 1)FA − 1 +

√
(d + 1)FB − 1)2

2(d + 1)
+
(
√
(d + 1)FA − 1 −

√
(d + 1)FB − 1)2

2(d − 1)
≤ 1. (87)

Optimality is satisfied when the inequality is saturated. They also give a similar inequality for 1 → 1 + 1 + 1 case.
Cerf obtained the same result in a different way, here we present the d-dimensional case (Cerf, 2000a; Cerf et al.,

2002a). This result can be reformulated for other cases such as for state-dependent case presented in next sections. The
transformation is:

|ψ⟩A →

d−1
m,n=0

am,nUm,n|ψ⟩A|Bm,−n⟩BR. (88)

Here Um,n is ‘‘generalized Pauli matrix’’:

Um,n =

d−1
k=0

e
2πkni

d |k + m⟩⟨k| (89)

and |Bm,n⟩ is one of the generalized Bell basis:

|Bm,n⟩ =
1

√
d

d−1
k=0

e
2πkni

d |k⟩|k + m⟩. (90)
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The resultant reduced density matrix

ρA =

d−1
m,n=0

|am,n|2Um,n|ψ⟩⟨ψ |UĎ
m,n. (91)

Hence the fidelity FA =
d−1

n=0 |a0,n|2. For B, we replace am,n by its Fourier transform bm,n =
1
d

d−1
m′,n′=0 e

2π(nm′
−mn′)i/dam′,n′ .

To clone all states equally well, the matrix a can be written in the following form:

a =


v x · · · x
x y · · · y
...

...
. . .

...
x y · · · y

 (92)

with normalization relation v2 + 2(d − 1)x2 + (d − 1)2y2 = 1. In this form, FA = v2 + (d − 1)x2 and the expression of bm,n
is just to replace x by x′

= [v + (d − 2)x + (1 − d)y]/d, y by y′
= (v − 2x + y)/d, v by v′

= [v + 2(d − 1)x + (d − 1)2y]/d.
Optimal cloning requires y = 0, and if we let a = v − x, b = dx, these coincide with the parameters a and b in the first
formalism.When v = v′

=
√
2/(d + 1), x = x′

=
√
1/(2d + 2), it reduces to the symmetric case. These results generalized

the qutrit cloning presented by Durt and Gisin (Cerf et al., 2002b).
The optimality of these cloningmachineswere also proved by Iblisdir et al. (2005a), Fiurášek et al. (2005) and Iblisdir et al.

(2005b). They also generalize the 1–2 asymmetric cloning machine to more general cases. Here we use N → M1 + · · ·+Mp
to denote such a problem: construct an asymmetric cloning machine resulting fidelity F1 forM1 copies, F2 forM2 copies, . . . ,
Fp forMp copies.

The 1 → 1 + 1 + 1 d-dimensional cloning machine was constructed as following:

|ψ⟩ →


d

2d + 2
[α|ψ⟩A(|Φ

+
⟩BR|Φ

+
⟩CS + |Φ+

⟩BS |Φ
+
⟩CR)+ β|ψ⟩B(|Φ

+
⟩AR|Φ

+
⟩CS + |Φ+

⟩AS |Φ
+
⟩CR)

+ γ |ψ⟩C (|Φ
+
⟩AR|Φ

+
⟩BS + |Φ+

⟩AS |Φ
+
⟩BR)] (93)

where A, B, C are three output states and R, S are ancillary states. |Φ+
⟩ = 1/

√
d
d−1

k=0 |kk⟩ as usual. For normalization
purpose, α, β, γ obey α2

+ β2
+ γ 2

+
2
d (αβ + βγ + αγ ) = 1. The final one copy fidelities for A, B, C are:

FA = 1 −
d − 1
d


β2

+ γ 2
+

2βγ
d + 1


FB = 1 −

d − 1
d


α2

+ γ 2
+

2αγ
d + 1


FC = 1 −

d − 1
d


α2

+ β2
+

2αβ
d + 1


. (94)

In Iblisdir et al. (2005a), the 1 → 1 + n cloning machine was found. The Hilbert space H⊗(n+1) is decomposed into two
symmetric subspace H+

n+1 ⊕ H+

n−1. Let sn+1 and sn−1 denote the projection operator, respectively, the transformation can
be written as:

T : ρ → (α∗sn+1 + β∗sn−1)(ρ ⊗ I⊗n)(αsn+1 + βsn−1). (95)

It is a generalization of the construction of symmetric UQCM (57). The resulting fidelity is FA = 1 −
2
3y

2 for the ‘1’ side, and
FB =

1
2 +

1
3n (y

2
+

√
n(n + 2)xy). Here x and y satisfy x2 + y2 = 1. A more general case, N → MA + MB, is studied with

similar method in Iblisdir et al. (2005b).
In studying asymmetric quantum cloning, the region of possible output fidelities for one to three cloning is studied in

Jiang and Yu (2010a), the case of one to many case is studied in Cwiklinski et al. (2012), the general case is studied in Kay
et al. (2012).

3.4. A unified UQCM

Recently, Wang et al. proposed a unified way to construct general asymmetric UQCM (Wang et al., 2011b), see Fig. 2.
The essence is to replace the symmetric operator sM in construction (69) by a linear combination of identity I and many
permutation operators. Take the 1 to 2 qubit cloning case as the simplest example, s2 =

1
2 (I

⊗2
+P ), where P = |00⟩⟨00|+

|11⟩⟨11| + |01⟩⟨10| + |10⟩⟨01| is a permutation(swap) operator (P |jl⟩ = |lj⟩). If s2 is replaced by αI⊗2
+ βP , the output

density matrix exactly coincides with the output density matrix in construction (72): |ψ⟩A → a|ψ⟩A|Φ
+
⟩BR +b|ψ⟩B|Φ

+
⟩AR,

with α =

√
3
2 a, β =

√
3
2 b.
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In order to introduce this method, here we present two examples to show explicitly that it can be applied straightfor-
wardly for various occasions.

For 1 → 3 asymmetric qubit cloning case, we replace the symmetry operator s3 by

αI + βP12 + γP13 + δP23 + µP123 + νP132. (96)

Note Pmn is the operator that swap the m qubit and the n qubit, and P123 is a cyclic operator that move the first
qubit to the second place, the second qubit to the third place, and the third qubit to the first place. P132 is its inverse
transformation. In fact these six components in (96) are just the elements of permutation group S3. The symmetry operator
s3 =

1
6 (I + P12 + P13 + P23 + P123 + P132), is retrieved when α = β = γ = δ = µ = ν =

1
6 . The 1 → 3 asymmetric

qubit cloning can be obtained by replacing s3 by (96) and insert it to the cloning transformation (69). Here we would like
to remark that the number of essential permutations for the specific 1 → 3 case are actually three. There are only three
independent parameters corresponding to cases: the input state is in first, second, and third positions, respectively. This will
be shown explicitly later. Now, if we trace out the ancillary states, it is equivalent to modify (57). The final density operator
is:

ρ =
1
2
(αI + βP12 + γP13 + δP23 + µP123 + νP132)(|ψ⟩⟨ψ | ⊗ I ⊗ I)

× (αI + βP12 + γP13 + δP23 + µP123 + νP132)

=
1
2
[α|ψ⟩⟨ψ | ⊗ I ⊗ I + β(|0ψ⟩⟨ψ0| + |1ψ⟩⟨ψ1|)⊗ I3 + γ (|0ψ⟩⟨ψ0| + |1ψ⟩⟨ψ1|)13 ⊗ I2

+ δ|ψ⟩⟨ψ |1 ⊗ (|00⟩⟨00| + |11⟩⟨11| + |01⟩⟨10| + |10⟩⟨01|)+ µ(|0ψ0⟩⟨ψ00|
+ |1ψ0⟩⟨ψ01| + |0ψ1⟩⟨ψ10| + |1ψ1⟩⟨ψ11|)
+ ν(|00ψ⟩⟨ψ00| + |01ψ⟩⟨ψ01| + |10ψ⟩⟨ψ10| + |11ψ⟩⟨ψ11|)]
× (αI + βP12 + γP13 + δP23 + µP123 + νP132)

=
1
2
[(α2

+ δ2)|ψ⟩⟨ψ | ⊗ I ⊗ I + (β2
+ µ2)I ⊗ |ψ⟩⟨ψ | ⊗ I + (γ 2

+ ν2)I ⊗ I ⊗ |ψ⟩⟨ψ |

+ (αβ + µδ)(|ψ0⟩⟨0ψ | + |ψ1⟩⟨1ψ | + |0ψ⟩⟨ψ0| + |1ψ⟩⟨ψ1|)12 ⊗ I3
+ (αγ + νδ)(|ψ0⟩⟨0ψ | + |ψ1⟩⟨1ψ | + |0ψ⟩⟨ψ0| + |1ψ⟩⟨ψ1|)13 ⊗ I2
+ (βγ + µν)(|00ψ⟩⟨0ψ0| + |01ψ⟩⟨1ψ0| + |10ψ⟩⟨0ψ1| + |11ψ⟩⟨1ψ1| + trans.)
+ (δβ + αµ)(|0ψ0⟩ψ00| + |0ψ1⟩ψ10| + |1ψ0⟩⟨ψ01| + |1ψ1⟩⟨ψ11| + trans.)
+ δγ (|0ψ0⟩⟨00ψ | + |0ψ1⟩⟨10ψ | + |1ψ0⟩⟨01ψ | + |1ψ1|⟩⟨11ψ | + trans.)
+ (βν + γµ)I1 ⊗ (|ψ0⟩⟨0ψ | + |ψ1⟩⟨1ψ | + |0ψ⟩⟨ψ0| + |1ψ⟩⟨ψ1|)23
+αν(|00ψ⟩⟨ψ00| + |01ψ⟩⟨ψ01| + |10ψ⟩⟨ψ10| + |11ψ⟩ψ11| + trans.)
+ 2αδ|ψ⟩⟨ψ |1 ⊗ (|00⟩⟨00| + |01⟩⟨10| + |10⟩⟨01| + |11⟩⟨11|)23
+ 2βµ|ψ⟩⟨ψ |2 ⊗ (|00⟩⟨00| + |01⟩⟨10| + |10⟩⟨01| + |11⟩⟨11|)13
+ 2γ ν|ψ⟩⟨ψ |3 ⊗ (|00⟩⟨00| + |01⟩⟨10| + |10⟩⟨01| + |11⟩⟨11|)12. (97)

Here trans. denotes the transposition of previous terms, for example, term |00ψ⟩⟨0ψ0| is followed by its transposition
|0ψ0⟩⟨00ψ |. Trace out the second and third qubits, we obtain the single qubit reduced density matrix,

ρ1 = [2(α2
+ δ2 + αδ)+ α(2β + 2γ + µ+ ν)+ δ(2µ+ 2ν + β + γ )+ µν + βγ ]|ψ⟩⟨ψ |

+ (β2
+ µ2

+ γ 2
+ ν2 + βµ+ βν + γµ+ γ ν)I. (98)

Hence a normalization relation is easily obtained:

2(α2
+ δ2 + αδ)+ α(2β + 2γ + µ+ ν)+ δ(2µ+ 2ν + β + γ )+ µν + βγ

+ 2(β2
+ µ2

+ γ 2
+ ν2 + βµ+ βν + γµ+ γ ν) = 1. (99)

Similarly we can find the reduced density matrices of the second and third copies, their fidelities are:

F1 = 1 −
1
2
[(β + µ)2 + (β + ν)2 + (γ + µ)2 + (γ + ν)2]

F2 = 1 −
1
2
[(α + δ)2 + (α + ν)2 + (γ + δ)2 + (γ + ν)2]

F3 = 1 −
1
2
[(α + δ)2 + (α + µ)2 + (β + δ)2 + (β + µ)2]. (100)
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It reduces to the symmetric cloning case when α = β = γ = δ = µ = ν =
1
6 , and the fidelity is 7/9, which exactly

coincide with the UQCM fidelity formula (59). To see its relation with the previous 1 → 3 asymmetric UQCM (93), we can
explicitly compute out the density matrix in (93):

ρout =
1
12

{4(α′
|ψ00⟩ + β ′

|0ψ0⟩ + γ ′
|00ψ⟩)(α′

⟨ψ00| + β ′
⟨0ψ0| + γ ′

⟨00ψ |)

+ 2[α′(|ψ01⟩ + |ψ10⟩)+ β ′(|0ψ1⟩ + |1ψ0⟩)+ γ ′(|01ψ⟩ + |10ψ⟩)]

× [α′(⟨ψ01| + ⟨ψ10|)+ β ′(⟨0ψ1| + ⟨1ψ0|)+ γ ′(⟨01ψ | + ⟨10ψ |)]

+ 4(α′
|ψ11⟩ + β ′

|1ψ1⟩ + γ ′
|11ψ⟩)(α′

⟨ψ11| + β ′
⟨1ψ1| + γ ′

⟨11ψ |)}. (101)

For clarity purpose we replace the coefficients α, β, γ in (93) with α′, β ′, γ ′. Compare this expression with (97), we found
if the following equations are satisfied, they are equivalent:

α′2

3
= (α + δ)2,

β ′2

3
= (β + µ)2,

γ ′2

3
= (γ + ν)2

α′2
= 12αδ, β ′2

= 12βµ, γ ′2
= 12γ ν. (102)

This implies α = δ = α′/(2
√
3), β = µ = β ′/(2

√
3), γ = ν = γ ′/(2

√
3). And in this case the fidelity expressions (100)

exactly coincide with the previous result (94). The cloning machine here has six parameters, which indicates that it is a
general form of asymmetric UQCM, and we do not need to consider the specific input positions.

We can study the 2 → 3 case similarly. The resultant density matrix is:

ρ =
1
2
(αI + βP12 + γP13 + δP23 + µP123 + νP132)(|ψψ⟩⟨ψψ | ⊗ I)

× (αI + βP12 + γP13 + δP23 + µP123 + νP132)

=
1
2
[(α + β)|ψψ⟩⟨ψψ | ⊗ I3 + (γ + µ)(|0ψψ⟩⟨ψψ0| + |1ψψ⟩⟨ψψ1|)

+ (δ + ν)(|ψ0ψ⟩⟨ψψ0| + |ψ1ψ⟩⟨ψψ1|)](αI + βP12 + γP13 + δP23 + µP123 + νP132)

=
1
2
[(α + β)2|ψψ⟩⟨ψψ | ⊗ I3 + (γ + µ)2I1 ⊗ |ψψ⟩⟨ψψ | + (δ + ν)2|ψ⟩⟨ψ | ⊗ I2 ⊗ |ψ⟩⟨ψ |

+ (α + β)(γ + µ)(|0ψψ⟩⟨ψψ0| + |1ψψ⟩⟨ψψ1| + trans.)
+ (α + β)(δ + ν)(|ψ0ψ⟩⟨ψψ0| + |ψ1ψ⟩⟨ψψ1| + trans.)

+ (γ + µ)(δ + ν)(|ψ0ψ⟩⟨0ψψ | + |ψ1ψ⟩⟨1ψψ | + trans.). (103)

We can see that there are only three independent parameters in the final expression: α+ β , γ +µ, δ+ ν, so we denote
themby A, B and C respectively.We trace out the other two states to obtain the following one copy reduced densitymatrices:

ρ1 = (A2
+ C2

+ AB + AC + BC)|ψ⟩⟨ψ | +
B2

2
I

ρ2 = (A2
+ B2

+ AB + AC + BC)|ψ⟩⟨ψ | +
C2

2
I

ρ3 = (B2
+ C2

+ AB + AC + BC)|ψ⟩⟨ψ | +
A2

2
I. (104)

The coefficients apparently satisfy a normalization relation: A2
+B2

+C2
+AB+BC +CA = 1. From the one copy reduced

density matrices we simply read out the fidelities:

F1 = 1 −
B2

2
, F2 = 1 −

C2

2
, F3 = 1 −

A2

2
. (105)

For symmetric cloning case, we let A = B = C = 1/
√
6, then the fidelity is 11/12, which exactly coincide with the UQCM

fidelity formula (59).

3.5. Singlet monogamy and optimal cloning

In quantum information science, entanglement is a resource for various QIP applications. On the other hand, the
entanglement cannot be shared freely amongmulti-parties. For example, for amultipartite quantum state, one party cannot
bemaximally entangled independently with other two parties simultaneously. It means that entanglement ismonogamous.
There are some monogamy inequalities for entanglement sharing (Coffman et al., 2000; Osborne and Verstraete, 2006; Ou
and Fan, 2007; Ou et al., 2008).
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In this review, we consider the singlet monogamy in application of quantum cloning. We know that singlet is a natural
maximally entangled state, we use the name of singlet monogamy to describe the restrictions on entanglement sharing.

Quantitatively, the amount of entanglement between A and B can be defined as

pA,B = max
U,V

⟨Φ+
|U ⊗ VρA,BUĎ

⊗ V Ď
|Φ+

⟩ (106)

where |Φ+
⟩ =

d−1
i=0 |ii⟩/

√
d is the d-dimensional maximally entangled state, which is standard in this review. This

quantity describes, under local unitary operations, the fidelity between state ρA,B and the maximally entangled state. In Kay
et al. (2009), Kay, Kaszlikowski and Ramanathan discovered the relation between singlet monogamy and 1 → N optimal
asymmetric UQCM. In their approach, a setup proposed by Fiurášek (2001a) is used:Λout(ψin) is a reduced densitymatrix so
that the efficiency of this cloning machine F is measured by averaging Tr[

√
ρinΛout(ψin)

√
ρin ]

2. Note this is a ‘‘average’’
definition of fidelity. In Fiurášek (2001a) it is proved F ≤ dλwhere λ is the maximal eigenvalue of the matrix

R =


dψin[|ψin⟩⟨ψin|

T
⊗Λout(ψin)]. (107)

For the specific 1 → N asymmetric cloning case,Λout(ψin) is defined to be

Λout(ψin) =

N
i=1

αiI1 ⊗ · · · ⊗ Ii−1 ⊗ |ψin⟩⟨ψin|i ⊗ Ii+1 ⊗ · · · ⊗ IN . (108)

Here αi is a set of parameters to describe the required asymmetry of output states, which satisfies
N

i=1 αi = 1. Rewriting
|ψin⟩ as U|0⟩, where U is a unitary operator in d-dimensional Hilbert space, then from (107) we find

R =


dU

N
i=1

αiUT
⊗ U|00⟩⟨00|0,iU∗

⊗ UĎ, (109)

where the subscript 0 denotes the port of state |ψin⟩⟨ψin|
T appeared in expression (107) which is now expressed as UT

|0⟩.
This equation is obtained by substituting Eq. (108) into Eq. (107), so subscript i corresponds to port of state |ψin⟩⟨ψin|

appeared in Eq. (108). The form of state transposition denoted as T is due to an identity Tr1(|ψin⟩⟨ψin|1|Φ
+
⟩⟨Φ+

|0,1) =
1
d |ψin⟩⟨ψin|

T
0 . After calculation it turns out to be

R =
1

d(d + 1)

N
i=1

αi(I + d|Φ+
⟩⟨Φ+

|)0,i. (110)

To find out the eigenvalue of this matrix, an ansatz is proposed:

|Ψ ⟩ =

N
i=1

βi|Φ
+
⟩|Φ⟩1...(i−1)(i+1)...N . (111)

βi is parameters satisfy normalization condition (
N

i=1 βi)
2

+ (d − 1)
N

i=1 β
2
i = d, and |Φ⟩ means a normalized

superposition of all permutation of |Φ+
⟩
⊗(N−1)/2 for odd N and |Φ+

⟩
⊗(N−2)/2

|0⟩ for even N . It satisfies

(|Φ+
⟩⟨Φ+

|0,j ⊗ I)|Φ⟩0,i|Φ⟩1...(i−1)(i+1)...N = γi,j|Φ
+
⟩0,j|Φ⟩1...(j−1)(j+1)...N . (112)

Here γi,j = [1 + δij(d − 1)]/d and hence we know |Ψ ⟩ is a eigenvector of R if αid
N

j=1 γi,jβj = [d(d + 1)− λ]βi for every i.
Combine this constraint with the expression of singlet monogamy of |Ψ ⟩: p0,i = (

N
j=1 γi,jβj)

2, as well as the normalization
condition, we get the singlet monogamy relation for 1 → N asymmetric cloning machine:

N
i=1

p0,i ≤
d − 1
d

+
1

N + d − 1


N
i=1

√
p0,i

2

. (113)

It is straightforward to find the one copy fidelity Fi = (p0,id+ 1)/(d+ 1). For symmetric UQCM case, one let all p0,i to be
equal to (N + d − 1)/dN and then the previous result F = (2N + d − 1)/[N(d + 1)] is regenerated. In Kay et al. (2009) it is
also shown that the previous 1 → 1 + 1 + 1 asymmetric cloning and 1 → 1 + N asymmetric cloning cases are consistent
with this approach.

The 1 → 4 asymmetric cloning can be similarly studied (Ren et al., 2011). The normalization condition in this specific
case turns out to be:

β2
1 + β2

2 + β2
3 + β2

4 +
2
d
(β1β2 + β1β3 + β1β4 + β2β3 + β2β4 + β3β4) = 1 (114)
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and the fidelity of these four copies are:

F1 = 1 −
d − 1
d


β2
2 + β2

3 + β2
4 +

2(β2β3 + β2β4 + β3β4)

d + 1


, (115)

F2 = 1 −
d − 1
d


β2
1 + β2

3 + β2
4 +

2(β1β3 + β1β4 + β3β4)

d + 1


, (116)

F3 = 1 −
d − 1
d


β2
1 + β2

2 + β2
4 +

2(β1β2 + β1β4 + β2β4)

d + 1


, (117)

F4 = 1 −
d − 1
d


β2
1 + β2

2 + β2
3 +

2(β1β2 + β1β3 + β2β3)

d + 1


. (118)

With general asymmetric quantum cloning machine available, we can expect that the corresponding relationship between
quantum cloning and entanglement monogamy can be constructed.

3.6. Mixed-state quantum cloning

In the previous discussions of quantum cloning, the input state is assumed to be pure. What if the input state is mixed
state ρ? Sometimes since we only look at the resulted local one-copy reduced density matrix, this procedure is named
‘‘broadcasting’’ (Barnum et al., 1996; D’Ariano et al., 2005b), as we already presented in this review. In Barnum et al. (1996),
Barnum et al. proved the 1 → 2 no cloning theorem can be extended to mixed state case, that is, for two non-commuting
input density matrices, the cloning machine cannot copy both perfectly, as we have already shown in previous sections.
Then D’Ariano, Macchiavello and Perinotti studied the extended N → M case and constructed the optimal UQCM (D’Ariano
et al., 2005b). They found a non-trivial result that the no-broadcasting theorem cannot be generalized to more than one
input case. Specifically, for UQCM, it is even possible to purify the input states when N ≥ 4, this phenomenon is called
‘‘superbroadcasting’’. Note here UQCM does not mean constant fidelity reached for every mixed state, since the existence
of such cloning machine (1 → M) was nullified by Chen and Chen (2007b). For mixed state cloning, it seems reasonable
to use the shrinking factor as the measure of merit for the quantum cloning machine. This is for cloning of mixed states in
symmetric subspace (Fan, 2003). The property of ‘‘universal’’ for mixed cloning machine is in the sense that the shrinking
factor of the single output is independent of the input mixed state.

In this subsection, we try to review some explicit results of mixed state cloning studied in Dang and Fan (2007), Fan et al.
(2007) and Yang et al. (2007). The UQCM for pure state (57) and (64) can be applied apparently to one input mixed state.
But if we input the direct product of two identical ρ, direct application of (57) cannot give the optimal output. This can be
easily figured out if we consider the 2 → 2 case. The optimal transformation is just leaving it unchanged, but if we apply
the symmetrization projection, since ρ ⊗ ρ contains an asymmetric part, this part is deleted so the final state changes. So
we need to find out other ways to achieve maximal fidelity.

We suppose the input state is identical copies of ρ = z0|0⟩⟨0| + z1|0⟩⟨1| + z2|1⟩⟨0| + z3|1⟩⟨1|, and we use the
notation |m, n⟩ to denote the totally symmetric state with m |0⟩s and n |1⟩s. Additionally we introduce |m, n⟩ which is
constructed by multiplying each components in |m, n⟩ by a different power of ω = exp[2π im!n!/(m + n)!] ranging from 0
to (m + n)!/(m!n!)− 1. For example, |2, 1⟩ = (|001⟩ + ω|010⟩ + ω2

|100⟩)/
√
3, with ω = exp[2π i/3]. Obviously |m, n⟩ is

orthogonal to |m, n⟩.
Then the 2 → 3 transformation is written as:

|2, 0⟩|R⟩ →


3
4
|3, 0⟩|R0⟩ +


1
4
|2, 1⟩|R1⟩

|1, 1⟩|R⟩ →


1
2
|2, 1⟩|R0⟩ +


1
2
|1, 2⟩|R1⟩

|0, 2⟩|R⟩ →


1
4
|1, 2⟩|R0⟩ +


3
4
|0, 3⟩|R1⟩

|1, 1⟩|R⟩ →


1
2
|2, 1⟩|R0⟩ +


1
2
|1, 2⟩|R1⟩. (119)

It can be verified that the output single copy reduced densitymatrix is 5
6ρ+

I
12 . The shrinking factor 5/6, apparently coincide

with the maximal shrinking factor of 2 → 3 UQCM in pure state case. The more general 2 → M mixed state cloner is
constructed in similar way:

|2, 0⟩|R⟩ →

M−2
k=0

α0k|M − k, k⟩|Rk⟩
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|1, 1⟩|R⟩ →

M−2
k=0

α1k|M − k − 1, k + 1⟩|Rk⟩

|0, 2⟩|R⟩ →

M−2
k=0

α2k|M − k − 2, k + 2⟩|Rk⟩

|1, 1⟩|R⟩ →

M−2
k=0

α1k| M − k − 1, k + 1⟩|Rk⟩ (120)

where

αjk =


6(M − 2)!(M − j − k)!(j + k)!
(2 − j)!(M + 1)!(M − 2 − k)!j!k!

. (121)

By calculations, it can also be shown that the shrinking factor leads to previous results (59) corresponding for pure state
case, hence it is optimal.

In (Dang and Fan, 2007) this construction is generalized to N → M case:

|N − m,m⟩|R⟩ →

M−N
k=0

βmk|M − m − k,m + k⟩|RM−N−k,k⟩, (122)

the coefficients are:

βmk =


(M − N)! (N + 1)!

(M + 1)!


(M − m − k)!

(N − m)! (M − N − k)!
·


(m + k)!
m!k!

. (123)

3.7. Universal NOT gate

Similar to the quantum cloning problem, one can ask if there is some transformation U that convert an arbitrary state
|ψ⟩ = α|0⟩ + β|1⟩ to its conjugate state |ψ⊥

⟩ = β∗
|0⟩ − α∗

|1⟩. For two states |ψ1⟩ = α|0⟩ + β|1⟩ and |ψ2⟩ = γ |0⟩ + δ|1⟩,
we have ⟨ψ2|ψ1⟩ = γ ∗α + δ∗β =


⟨ψ2|UĎU|ψ1⟩

∗, hence U is an anti-unitary operator. And it is not completely positive
hence cannot be applied to a small system, as argued by Bužek, Hillery and Werner in Bužek et al. (1999).

Then it is a question whether we can have a universal NOT gate approximately. A general N → M universal NOT gate is
constructed by using the universal cloningmachine. The final single copy output density matrix is ρout,1 =

N
N+2 |ψ

⊥
⟩⟨ψ⊥

|+

1
N+2 I , regardless of M . In fact, this is exactly the reduced density matrix of the ancilla in the UQCM. This is an interesting
result since it shows the ancilla has the ‘‘anti-clone’’ meaning. The optimality of this universal NOT gate is also proved (Bužek
and Hillery, 2000). The universal NOT gate or anti-cloning is the same as the universal spin flip machine (Gisin and Popescu,
1999). Related, it is found that a pair of antiparallel spins can contain more information than that of parallel spins. The
universal NOT gate is studied for continuous variable system in Cerf and Iblisdir (2001a). The experimental implementation
of universal NOT gate in optical system is reported in De Martini et al. (2002). The universal controlled-NOT gate is studied
in Siomau and Fritzsche (2010b).

3.8. Minimal input set, six-state cryptography and other results

Bruß showed that the 1 → 2 optimal cloning of the following six states with equal fidelity for each state is equivalent to
the qubit UQCM (Bruß, 1998),

{|0⟩, |1⟩} ;
1

√
2
(|0⟩ + |1⟩),

1
√
2
(|0⟩ − |1⟩)


;

1
√
2
(|0⟩ + i|1⟩),

1
√
2
(|0⟩ − i|1⟩)


. (124)

These six states can be represented on Bloch sphere as Fig. 3.
These six states are exactly the three basis used in the six-stateQKDprotocol, and indeed theUQCMcanbe regarded as the

optimal way to attack the quantum channel in this protocol (Bechmann-Pasquinucci and Gisin, 1999). This is an interesting
phenomenon, it means that the optimal cloning machine for those six states can actually clone arbitrary qubits optimally.
On the other hand, it also means that we cannot clone six states better than a UQCM does.
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Fig. 2. Schematic N → M qudit UQCM. For initial states, there are N identical pure states |ψ⟩ and M − N maximally entangled states. One part of these
entangled states are processed by a symmetric operator sM together with the N input states, see Ref. Wang et al. (2011b).

Fig. 3. The six states used in quantum key distribution, the optimal cloning machine to clone those six states is a UQCM.

A reverse question might be interesting: how many states are enough to define a UQCM? More explicitly, what is the
minimal number of the states in the input set, such that the optimal cloning machine that achieves equal fidelity for them
is equivalent to the UQCM? Jing et al. (2012) solved this problem in the 1 → 2 cloning case. The minimal set turns out to be
four states on the vertex of a tetrahedron:

|ψ1⟩ = |0⟩,
|ψ2⟩ = cos(θ/2)|0⟩ + sin(θ/2)|1⟩,
|ψ3⟩ = cos(θ/2)|0⟩ + sin(θ/2)e2iπ/3|1⟩,

|ψ4⟩ = cos(θ/2)|0⟩ + sin(θ/2)e4iπ/3|1⟩, (125)

where θ satisfies cos(θ/2) =

√
3
3 , see Fig. 4.

There is a similar phenomenon for states on the equator of the Bloch sphere, whichwill be demonstrated in the following
section.

3.9. Other developments and related topics

The quantum cloning machine is originally proposed by considering arbitrary input states, thus it in general has the
universal property (Bužek and Hillery, 1996, 1998). For qubit case, by mapping several identical pure states into the cloning
of output states assisted by ancillary states, the general universal cloning machine is realized (Gisin and Massar, 1997). The
optimality of the fidelity is later proved by considering that the case of infinite copies should be equivalent to quantum state
estimation (Bruß et al., 1998b). Along this line, the one to many universal cloning machine for higher-dimensional case is
also studied in Albeverio and Fei (2000). By using the symmetric projection on identical pure states and tensor product of the
identities, which are completely mixed states instead of the intuitively assumed blank states, Werner proposed the optimal
universal cloning (Werner, 1998). The fidelity between all copies of the output density operator with the ideal copies is used
as the figure of merit for this cloning machine. The optimal fidelity between single copy and a single input state is later
obtained (Keyl andWerner, 1999). The cloning of higher dimensional state is also studied independently in Zanardi (1998).
Equivalently but differently by explicit transformation method, the general many to many universal quantum cloning of
higher dimensional state is proposed in Fan et al. (2001a). The combination of this universal cloning machine with the one
by projection method (Werner, 1998) is proposed resulting in a unified universal cloning machine (Wang et al., 2011b).



268 H. Fan et al. / Physics Reports 544 (2014) 241–322

Fig. 4. The four states on the vertex of a tetrahedron, which determines a UQCM in 1 → 2 cloning case.

Also,the fidelities which range from cases of single copy to multiple copies are all obtained. Let us remark that the well-
accepted theory of fidelity for mixed states can be found in Josza (1994).

The topic of universal quantum cloning is well studied. Next, we try to list those closely related developments in two
directions. The first direction is in general about the concepts extension from universal quantum cloning. The second
direction is about the realization of quantum cloning by various schemes and with various noises.

Let us first list the topicswhich can be relatedwith universal quantumcloning, someof those topicsmay leads to potential
applications.

• State estimation. The state estimation is corresponding to one to infinity quantum cloning, and it roughly describes
how to find the exact form of an unknown state. Asymptotically, the quantum cloning machine corresponds to state
estimation (Bae and Acín, 2006; Bruß et al., 1998b; Bruß andMacchiavello, 1999; Derka et al., 1998). The state estimation
can be understood like the asymmetric quantum cloning which keeps one copy untouched and the rest infinite copies
are used to estimate the form of the input state. It can be expected that the precision of estimation and the fidelity of the
remained copy has a tradeoff relation. This relation means that the more information gained from the estimation, the
larger disturbance is induced to the remained copy. This phenomena is demonstrated by a tradeoff relation between the
information gain and the disturbance on the estimated state (Banaszek, 2001), also inMaccone (2006) and (Kretschmann
et al., 2008).

• Measurement. The optimal minimal measurements of mixed states is studied in Vidal et al. (2003), which set the
limits to optimal cloning of mixed states. Two incompatible observables cannot be measured simultaneously for a
quantum system, the cloning schemes are studied for this task to accomplish it optimally (Brougham et al., 2006). The
trade-off relations between measurement accuracy of two or three non-commuting observables of a qubit system is
studied in Sagawa and Ueda (2008), this leads to the no-cloning inequality. The application of this method in quantum
communication and the separability of quantum and classical information is studied in Ricci et al. (2005).

• Quantum key distributions. The security of QKD can be analyzed by using quantum cloning machine to attack the
protocol. This attack can be considered as a simple quantum attack used by the eavesdropper, usually named as Eve.
She can use a quantum cloning machine to keep a copy of the state and send another copy to the legitimated receiver.
The strength of the attack can be adjusted by using the asymmetric case of quantum cloning. After the announcing of
bases used by the sender and the receiver in the QKD protocol, Eve can decode her copy, which in general is not perfect,
to find the secrete key. In extreme case, Eve may have a perfect copy but the state in the legitimated receiver side will be
random and thus this attack can be easily detected. The universal quantum cloning machine is directly used to analyze
the security of six states QKD protocol (Bruß, 1998). It is shown that if we want to clone those six states equally well, we
cannot do better than the universal quantum cloning machine. Interestingly, is apparent that those six states is only a
subset of any arbitrary states. We can actually go step further, one may find that the universal quantum cloning machine
can be determined completely by only four input states located on the vertices of a tetrahedron inside the Bloch sphere
(Jing et al., 2012). The general d dimension QKD by using d + 1 mutually unbiased states is investigated by universal
cloningmachine in Cerf et al. (2002a), see also a unifiedmethod in Xiong et al. (2012). One problemmight be that what is
the minimal input set which can determine a universal cloning machine in higher dimensional case. On the other hand,
the figure of merit of quantum cloning machine is by the fidelity of input and output states. By applying the quantum
cloning machine in QKD, the mutual information between pair of the sender and the receiver in comparing with the pair
between the eavesdropper and the sender are used. The relationships between quantum cloning, eavesdropping of QKD
and the Bell inequalities are presented in Gisin and Huttner (1997).

• Cloning other than identical pure states. The universal cloning is in general to study the quantum cloning of identical
pure states. The aim can be extended to other practical and interesting cases. The problem of learning an unknown
unitary transformation from a finite number of examples is related to, but different from cloning, which is studied in Bisio
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et al. (2010). The cloning of a quantum measurement is studied in Bisio et al. (2011). The repeatable quantum channels
with quantum memory is studied in Rybar and Ziman (2008), this topic is something like quantum cloning of quantum
channels. It is interestingly observed that a pair of qubits with anti-parallel spinsmay encodemore quantum information
(Gisin and Popescu, 1999), collective and local measurements of them is studied in Massar (2000), the cloning of those
kind of states is studied in Fiurášek et al. (2002). The upper bound of global fidelity for mixed state universal cloning and
state-dependent cloning are obtained in Rastegin (2003b) and in Rastegin (2003a). In relativistical quantum information,
a trade-off relation is studied for universal cloning of qudit (Jochym-O’Connor et al., 2011). The high fidelity copies from
asymmetric cloningmachine are studied in Siomau and Fritzsche (2010a). The reverse of quantum cloning is also studied
in photon stimulated emission scheme (Raeisi et al., 2012) and in continuous variable system (Filip et al., 2004). Several
cases of qubit quantum cloning combinations are investigated in Wu and Wu (2012).

• Some applications of quantum cloning. The superbroadcasting, which combines broadcasting and simultaneous
purification of the local output states together, is investigated in Chiribella et al. (2007). The information transfer, and
the information in practical cloning machine are presented in Deuar and Munro (2000b; 2000c). The information flux
in many body system and in quantum cloning machine is studied in Di Franco et al. (2007). The measurements on
various subsystems of the cloningmachine is studied in Bruß et al. (2001). The cloning is also related with optimizing the
completelymapsusing semidefinite programming (Audenaert andDeMoor, 2002). Numerical calculations are performed
to study the relationships between fidelities of cloning machines and the entanglement (Durt and Van de Putte, 2011).
Related, the optimal realization of the transposition maps is studied in Buscemi et al. (2003). The UQCM is also adopted
to investigate the entanglement and the quantum coherence of the output field in the high-gain quantum injected
parametric amplification Caminati et al. (2006). The application of cloning machine to improve the detectors is in Deuar
and Munro (2000a). On the other hand, there are also some no-go theorems. Non-existence of a universal quantum
machine to examine the precision of unknown quantum states, which is related to UQCM, is investigated (Pang et al.,
2011).

Secondly, we present the results about the realization of universal quantum cloning.

• The optimal quantum cloning model is only proposed by considering ideal condition, but in order to make practical
cloning, we have to consider effects such as noise. The introduction of interference in UQCM is investigated, it is shown
that this interference does not diminish the optimal fidelity 5/6 for 1–2 qubit symmetric cloning (Roubert and Braun,
2008). If the ancillary state is not ideally initialed, its effect on the optimal UQCM is studied in Zhang et al. (2012). The
influence of temperature in quantum cloning is analyzed in Baghbanzadeh and Rezakhani (2009). The comparison of
fidelities of quantum cloning expressed in theory and under experimental conditions is investigated in Khan and Howell
(2004). The possibility to improve the fidelity of the UQCM in the photon stimulated emission scheme is studied in
Dasgupta and Agarwal (2001).

• The ultimate aim of QCM is to be physically implemented, and many proposals have been put up. The spin networks
is possible to realize the UQCM (De Chiara et al., 2004). The realization of UQCM is also proposed in optical system
(Filip, 2004a,b; Irvine et al., 2004). The Hamiltonian realization of UQCM via adiabatic evolution is proposed, the
maximal eigenvalue of this Hamiltonian matrix is the fidelity (Jiang and Yu, 2010b). The proposals to implement cloning
machines in separate cavities are in Fang et al. (2011), by superconducting quantum-interference device qubits in a
cavity is presented in Yang et al. (2008). The scheme for implementing a UQCM in cavity QED with atoms is studied in
Zheng (2004), by ion trap technique is proposed in Zheng (2005), by cavity-assisted atomic collisions is proposed in Zou
et al. (2003), via cavity-assisted interaction is studied in Fang et al. (2012a). The scheme of quantum cloning of atomic
state into two photonic states is presented in Song and Qin (2008). The broadband photon cloning and the entanglement
creation of atoms in waveguide is studied in Valente et al. (2012). As we can see, photonic system can play an important
role in implementing QCM, a recent review about photonic quantum information processing can be found inMartini and
Sciarrino (2012); Pan et al. (2012).

• Some experiments have realized successfully the universal quantum cloning. The universal cloning by entangled para-
metric amplification is studied in De Martini et al. (2000). The asymmetric UQCM is realized experimentally by partial
teleportation (Zhao et al., 2005). The asymmetric quantum cloning machine is realized experimentally by polarization
states of single photons (Cernoch et al., 2009). The experimental quantum cloning can also be realized by using photon’s
orbital angularmomentum (Nagali et al., 2009). If both polarization and orbital angularmomentumdegrees of freedomof
photons are used, the four-dimensional quantum state can be encoded. The experimental cloning of four-dimension state
by this scheme is demonstrated in Nagali et al. (2010). The general UQCM realized by projective operators and stochastic
maps is investigated both theoretically and experimentally presented in Sciarrino et al. (2004b). By photon polarization
in optics system, the universal quantum cloning and universal NOT gate is implemented experimentally (Sciarrino et al.,
2004a).

4. Probabilistic quantum cloning

Concerning the B92 protocol which involves only two non-orthogonal states (Bennett, 1992), we can try to clone it with
the largest probability. That is, by measuring a detector, we can make sure that the involved state is cloned perfectly or we
know that the cloning process fails. The aim of this quantum cloning is to achieve the optimal probability.
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4.1. Probabilistic quantum cloning machine

While the previous mentioned quantum cloning machines can always succeed, on the same time, the copies cannot be
perfect. Duan and Guo (1998b, 1998a), Duan and Guo (1999) proposed a different quantum cloning machine: while the
coping task can succeed with probability, but if it is successful, we can always obtain perfect copies. This kind of quantum
cloning machine is called probabilistic quantum cloning machine.

This quantum cloning machine is useful, in particular, in studying the B92 quantum key distribution protocol (Bennett,
1992). In this QKD protocol, only two non-orthogonal states are used for key distribution so the attack is simply to use
a specified quantum cloning machine to clone those two non-orthogonal states. In fact, this is the simplest case for
probabilistic quantum cloning machine which is used to copy two linearly independent states S = {|Ψ0⟩, |Ψ1⟩} (Duan and
Guo, 1998b). The cloning transformation can be proposed as:

U(|Ψ0⟩|Σ⟩|mp⟩) =
√
η0|Ψ0⟩|Ψ0⟩|m0⟩ +


1 − η0|Φ

0
ABP⟩,

U(|Ψ1⟩|Σ⟩|mp⟩) =
√
η1|Ψ1⟩|Ψ1⟩|m1⟩ +


1 − η1|Φ

1
ABP⟩, (126)

where |mp⟩, |m0⟩, |m1⟩ are ancillary states. The measurements are performed in these states. And the states |Φ0
ABP⟩ and

|Φ1
ABP⟩ are chosen so that the reduced state of P is orthogonal to |m0⟩ and |m1⟩. When the measurements are |m0⟩ or |m1⟩,

we know the states S = {|Ψ0⟩, |Ψ1⟩} are copied perfectly. Otherwise, the cloning task fails. The probabilities of success are
η0 and η1 for states |Ψ0⟩ and |Ψ1⟩, respectively. If we let η0 = η1 = η, we know that

η ≤
1

1 + |⟨Ψ0|Ψ1⟩|
. (127)

This is also a no-cloning theorem: only orthogonal states can be cloned perfectly. And the optimal probabilistic quantum
cloning is to let η = 1/(1 + |⟨Ψ0|Ψ1⟩|). It is also related with the problem of how to distinguish non-orthogonal quantum
states.

The more complicated case is to copy a set of linearly independent states S = {|Ψ0⟩, |Ψ1⟩ . . . , |Ψn⟩}. The form of the
probabilistic cloning machine is:

U(|Ψi⟩|Σ⟩|P0⟩) =
√
γi|Ψi⟩|Ψi⟩|P0⟩ +

n
j=1

cij|Φ
j
AB⟩|Pj⟩. (128)

P0 . . . Pn is a set of orthonormal ancilla states. Hence if the measurement result of the ancilla turns out to be P0, we know the
state |Ψi⟩ is perfectly cloned, with the probability γi. Taking the inner product of different i and j in (128), there is a matrix
equation

X (1) −
√
Γ X (2)

√
Γ = CCĎ (129)

where X (k)ij = ⟨Ψi|Ψj⟩
k, Γ = Γ Ď

= diag{γ1 . . . γn}, Cij = cij. If the input states |Ψi⟩s are not linearly independent, X (1) is
not positive definite. And for generic positive definite matrix Γ , the right-handed side of (129) is not positive semidefinite,
hence the equation is not valid as the matrix CCĎ is positive semidefinite. Hence such probabilistic cloning machine only
exists for linearly independent states. (This result is also confirmed by Hardy and Song using the no-signaling argument
(Hardy and Song, 1999).) They then found the existence is equivalent to the positive semidefiniteness of X (1)−Γ . The result
is called the Duan–Guo bound to distinguish linearly independent quantum states (Duan and Guo, 1998a). The 1 → M
cloningmachine is also easy to formulate, just by adding the number of copies at the right-handed side of (128). Later Zhang
et al. (2000b) constructed a network using universal quantum logic states realizing this cloning machine.

Later, Azuma et al. (2005) studied the case with supplementary information, that is, the |Σ⟩ at the left-handed side of
(128) is state dependent. Li and Qiu (2007) explored the case with two ancilla systems, but it is shown that the performance
cannot be improved.

4.2. A novel quantum cloning machine

For probabilistic cloning machine, Pati (1999) explored the possibility that the output state contains all possible copies
of the original state. That is, for a set of input states |Ψ1⟩ . . . |Ψn⟩, does there exist a transformation U in the following form:

U(|Ψi⟩|Σ⟩|P0⟩) =

M
j=1


p(i)j |Ψi⟩

⊗(j+1)
|0⟩⊗(M−j)

|Pj⟩ +

N ′
k=M+1


f (i)k |Φk

AB⟩|Pk⟩. (130)

|P1⟩, . . . , |PN ′⟩ is a set of orthonormal ancilla states, as usual. In fact, this can be regarded as a superposition of the
1 → 2, . . . , 1 → (M + 1) cloning machines. From the unitarity constraint, we have

⟨Ψi|Ψj⟩ =

M
k=1


p(i)k ⟨Ψi|Ψj⟩

k+1

p(j)k +

N ′
l=M+1


f (i)l f (j)l . (131)



H. Fan et al. / Physics Reports 544 (2014) 241–322 271

This equation can be rewritten as a equation of matrices

X (1) =

M
k=1

PkX (k+1)Pk +

N ′
l=M+1

F (l). (132)

Here Pk = PĎ
k = diag{p(1)k , . . . , p

(n)
k }, X (k)ij = ⟨Ψi|Ψj⟩

k as usual and F (l)ij =


f (i)l f (j)l . From this relation, they proved if the

states are linearly independent, then the equation can be satisfied with positive definite Pks and Fls. It is also simple to
see the transformation does not exist if the set of input state contains a state that is a superposition of other states says
|Ψ ⟩ =


j cj|Ψj⟩, since we can simply add the U(|Ψ ⟩|Σ⟩|P0⟩) =


j cjU(|Ψj⟩|Σ⟩|P0⟩). And from the right-handed side of

(130) we can see that it is inconsistent.
Under this framework, the cloning machine of Duan and Guo can be viewed as a special case of M = 1, see (Duan and

Guo, 1998b).
Later, Qiu (2002) proposed a combination of Pati’s probabilistic cloning machine and the approximate cloning machine

in the usual sense, which is a more general framework. The condition with supplementary information is also explored, that
is, the |Σ⟩ at the input side is state dependent. It is found that the probability of success may increase (Qiu, 2006).

4.3. Probabilistic quantum anti-cloning and NOT gate

Similar to the approximate universal NOT gate in the UQCM section of this review, we can also construct a probabilistic
quantum anti-cloning and NOT gate in the framework of probabilistic cloning. Our aim for probabilistic quantum anti-
cloning and NOT gate is that we keep the input state unchanged, at the same time, we create additionally an anti-cloning
state which corresponds to the NOT gate. Actually, this task can only be fulfilled probabilistically. A 1 → 2 probabilistic
quantum anti-cloning and NOT gate is proposed by Hardy and Song in Hardy and Song (1999):

U(|Ψi⟩|Σ⟩|P0⟩) =

f |Ψi⟩|Ψ

⊥

i ⟩|P0⟩ +

n
j=1

cij|Φ
j
AB⟩|Pj⟩. (133)

By measuring the probe states |P0⟩ and |Pj⟩ which are orthonormal, we know whether the realization of anti-cloning and
NOT gate is successful or not. On the other hand, we already know that the perfect universal NOT gate is impossible
(Bužek et al., 1999), the realization of only the NOT gate probabilistically seems an interesting question, |Ψi⟩ → |Ψ⊥

i ⟩.
The input states are |Ψ1⟩, . . . , |Ψn⟩, as usual. Taking the inner product of different i, j, we get

X (1) = fX ′
+ CCĎ (134)

where X ′

ij = ⟨Ψi|Ψj⟩⟨Ψ
⊥

i |Ψ⊥

j ⟩ and other notation is same as above. If the input states are linearly independent, then the
Grammatrix at the left-handed side of above equation is positive definite. Hence for a sufficiently small f , we can guarantee
CCĎ is also positive semidefinite. So such a cloning machine always exists. As a simple example, we consider the case
n = 2, a11 = a21 =

√
1 − f , a12 = a22 = 0, then (133) can be written as:

|Ψ1⟩ →

f |Ψ1⟩|Ψ

⊥

1 ⟩|P0⟩ +

1 − f |ΦAB⟩|P1⟩

|Ψ2⟩ →

f |Ψ2⟩|Ψ

⊥

2 ⟩|P0⟩ +

1 − f |ΦAB⟩|P1⟩. (135)

In this case, we have a constraint of f :

f ≤
1 − |⟨Ψ1|Ψ2⟩|

1 − |⟨Ψ1|Ψ2⟩||⟨Ψ
⊥

1 |Ψ⊥

2 ⟩|
=

1
1 + |⟨Ψ1|Ψ2⟩|

(136)

which is identical to the Duan and Guo case (Duan and Guo, 1998b). Li et al. (2007) extended the above case to the case
where the output state contains all of |Ψ ⟩|Ψ⊥

⟩, |Ψ ⟩|Ψ⊥
⟩
⊗2, . . . , |Ψ ⟩|Ψ⊥

⟩
⊗M .

4.4. Other developments and related topics

The probabilistic quantum cloning (Duan and Guo, 1998b; 1998a) was initiated to study the attack on a QKD protocol
proposed by Bennett (B92) which can exploits any two nonorthogonal states for key distribution (Bennett, 1992). Different
from the approximate quantum cloning, the probabilistic cloning aims to have perfect copies by sacrificing the success
probability, i.e., in case of failing, the state owned by eavesdropper is useless, but in case of success, the eavesdropper will
have perfect copies. The aim of the probabilistic quantum cloning is equivalent to discriminate probabilistically different
quantum states such as the two nonorthogonal states in B92. Thenwe next try to list three directions of research in studying
probabilistic quantum cloning.

• The probabilistic quantum cloning is equivalent the quantum states discrimination. Along this line, the relation between
the cloning machine and states discrimination can be found, for example, in Chefles and Barnett (1998); Feng et al.
(2005); Zhang et al. (2010b). The minimum-error discrimination ambiguously of mixed states is studied in Qiu (2008).
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The optimal unambiguous discrimination of two density matrices is studied in Raynal and Lutkenhaus (2005). The
optimal observables for minimum-error state discrimination is studied in Nuida et al. (2010). By homodyne detection,
distinguishing two single-modeGaussian states is studied inNha andCarmichael (2005). It is also shown that according to
Wigner–Araki–Yanase theorem that the repeatability and distinguishability cannot be reached simultaneously (Miyadera
and Imai, 2006b). In order to distribute a quantum state to a coupled two subsystems, the strength of interaction
should be above a threshold (Miyadera and Imai, 2006a). The unambiguous discrimination of two squeezed states using
probabilistic cloning is investigated in Mishra (2012).

• Probabilistic quantum cloning of various states and different methods have been presented. Fiurášek (2004) used the
technique described in the ‘‘Singlet Monogamy’’ subsection in the UQCM part to analyze the optimality of probabilistic
cloning machine. The study of probabilistic cloning of qubits with real parameters is shown in Zhang et al. (2010a)
The assisted probabilistic quantum cloning is proposed by Pati in Pati (2000). The broadcasting of mixed state using
probabilistic cloning machine is shown in Li et al. (2009). The optimal probabilistic ancilla-free, which is economic,
phase-covariant qudit telecloning machine is presented in Wang and Yang (2009b). The probabilistic cloning of three
symmetric states (Jimenez et al., 2010a) and equidistant states (Jimenez et al., 2010b) are also studied.

• The implementation, both theoretically and probabilistically, of probabilistic quantum cloning is also an important
subject. The scheme to implement probabilistic cloning of qubits via twin photons is proposed in Araneda et al. (2012).
The scheme by GHZ states is proposed in Zhang et al. (2000a).

Experimentally, the accuracy of quantum state estimation is studied (Usami et al., 2003), this accuracy is also
compared with asymptotic lower bound obtained theoretically by Cramér–Rao inequality. The probabilistic quantum
cloning experimentally realized in NMR system is reported in Chen et al. (2011). By generalizing the probabilistic
cloning to state amplification, the experimental heralded amplification of the photon polarized state and entanglement
distillation are reported in Xiang et al. (2010) and (Kocsis et al., 2013).

5. Phase-covariant and state-dependent quantum cloning

In last section, we studied the quantum cloning machines which are universal. That is the case that the input states are
arbitrary or we know nothing about the input state. Practically, it is possible that we already know partial information of the
input state. The point iswhether this partial information is helpful or not for us to obtain a better fidelity in quantum cloning.
In this section, wewill show that depending on specified input states, we can design some quantum cloningmachineswhich
perform better for those restricted input states than that the universal cloning machines.

On the other hand, one of the most important applications of quantum cloning is to analyze the security of quantum
key distribution protocols. In security analysis, the quantum states transfer through a quantum channel. We suppose that
this quantum channel is controlled by the eavesdropper who is generally named as Eve. Eve can perform any operations
which is allowed by quantum mechanics. One direct attack is the ‘‘receive–measure–resend’’ attack where ‘‘measure’’ can
be supposed to be a quantum operation. However, quantum mechanics states that non-orthogonal quantum states cannot
be distinguished perfectly. So the measured results will in general not be perfect and thus the obtainedmeasurement result
is not the original sent state. This will induce inevitable errors which can be detected by public discussions between the
legitimated sender and receiver, Alice and Bob, in QKD.

Eve can choose freely her attack schemes. The quantum cloning machines provide a quantum scheme of eavesdropping
attack. We just assume that the Eve has an appropriate quantum cloning machine. By quantum cloning, Eve can keep one
copy of the transferring state and send another copy to the legitimate receiver, Bob. Now Eve and Bob both have copies of
the sending state. By this process, we can find how much information can be obtained by Eve, and on the other hand, how
much errors are induced by this attack. This provides a security analysis of QKD. In this eavesdropping, Eve intends to get
some information secretly between Alice and Bob’s communication andwish tomake the least possibility to be detected. So
the optimal quantum cloningmachine is required. Based on different QKD protocols, various cloningmachines are designed
specially. The universal quantum cloning machines studied in the previous sections themselves might be optimal. But it
may not be optimal for the quantum states involved in a special QKD protocol. So the state-dependent quantum cloning
machines are necessary. In this section, we will give all the examples of state-dependent cloning.

5.1. Quantum key distribution protocols

In this subsection, we intend to refer some quantum key distribution protocols and show how the eavesdropper attacks
them. Each protocol may lead to a special kind state-dependent cloning machine. Initial protocols are based simply on 2-
dimension system and later they are generalized to higher-dimension. Next, we present in detail the well-known BB84
protocol (Bennett and Brassard, 1984) and briefly its generalizations. An earlier review of QKD is in Gisin et al. (2002).
1. BB84 protocol (Bennett and Brassard, 1984) uses two sets of orthogonal 2-level states and intersection angle in Bloch-

sphere between different sets is 90◦. They can be written as following, see Fig. 3,

|0⟩, |1⟩,
1

√
2
(|0⟩ + |1⟩),

1
√
2
(|0⟩ − |1⟩). (137)
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Note that by operating a unitary transformation, characteristics of these states remain unchanged. Therefore, we
may also use the following four states in BB84 protocol which are still two sets of orthogonal 2-level states with 90◦

intersection angle, also see all those states in Fig. 3.
1

√
2
(|0⟩ ± |1⟩),

1
√
2
(|0⟩ ± i|1⟩). (138)

In BB84 protocol, Alice sends one of these four qubits to Bob through a certain quantum channel which is controlled
by Eve. After receiving the qubit, Bob measures the obtained qubit with one of the two bases randomly. After Bob has
finished his measurement, Alice would announce the bases of each qubits. If their bases coincidence, Bob’s measurement
result is surely correct. Alice and Bob will share a common secrete key. If sending basis and the measurement basis are
different, they simply discord this bit of information. Also they may use some qubits as the checking qubits to find out
the error rate introduced by the quantum channel. They can suppose that all errors are caused by Eve’s attack.

The eavesdropper, Eve, will capture the qubits in the quantum channel and clone them. She remains one part to copies
and still sends the other part to Bob in the quantum channel. As soon as Alice broadcasts the bases, Eve measures her
own qubits sequentially to derive the information sent between Alice and Bob.

This BB84 protocol is proved to be unconditional secure and the security is based on principles of quantummechanics.
The security proofs of BB84 protocol are given by several groups, for exampleMayer (2001), Lo and Chau (1999), Shor and
Preskill (2000). We remark that Ekert proposed a QKD strategy based on the non-locality of quantum mechanics (Ekert,
1991) which is the same of the BB84 protocol.

2. B92 (Bennett, 1992) is a protocol which uses any two non-orthogonal states. Tamaki et al. (2003) provide the security
proof of this protocol. In this review, we suppose those two states take the form,

1
√
2
(|0⟩ + eiφk |1⟩), k = 1, 2. (139)

3. BB84 protocol can be generalized to 6-state protocol (Bruß, 1998). The six states involved in this protocol are BB84 states
plus twomore states as shown in Eq. (124). Interestingly, the optimal cloning of those six states is the universal quantum
cloning machine as already shown in previous sections.

4. For higher-dimensional case, the QKD protocols can use 2-basis or d+1-basis in a d-level system as studied by Cerf et al.
(2002a).

5. In d-dimension, there are altogether d + 1 mutually unbiased bases (MUB), provided d is prime. Any (g + 1)-basis from
those MUBs, g = 1, 2, . . . , d, can actually be used for QKD (Xiong et al., 2012). Here, we briefly give the definition of
MUB, {|i⟩} and {|ĩ(k)⟩} (k = 0, 1, . . . , d − 1), they are expressed as:

|ĩ(k)⟩ =
1

√
d

d−1
j=0

ωi(d−j)−ksj |j⟩, (140)

with sj = j + · · · + (d − 1) and ω = ei
2π
d . These states satisfy the condition, |⟨ĩ(k) |̃l(j)⟩| = δkjδil +

1
√
d
(1 − δkj). States in

different set of bases are mutually unbiased.
6. Basing on the characteristics of MUB, we can design a retrodiction protocol using method of mean king game. This spe-

cial protocol, different from BB84 or other QKD protocols, shows that Bob has a 100% successful measurement scheme
in comparison with the 1/(g + 1) successful measurement in such as BB84 protocols. Here we remark that quantum
memory is not available for Bob. We will present a detailed analysis of this retrodiction protocol.

5.2. General state-dependent quantum cloning

As to the above QKD protocols, universal quantum cloning machine is sure to work well, but not surely to be the optimal
one. Thus if we need a higher quality of the output from the cloning machine, a state-dependent cloning machine is needed.
In fact, each protocol corresponds to a special kind of state-dependent cloning machine based on the given ensembles of
states.

Let us firstly consider a general case based on two equatorial states. Obviously, it is equivalent to the B92 protocol
(Bennett, 1992). To be non-trivial and satisfy the B92 protocol, these states are nonorthogonal. The cloning machine is
designed to clone only these two states optimally and equally well without considering other states on the Bloch sphere.
This problem is studied in Bruß et al. (1998a).

The quantum cloning machine takes a completely unknown 2-level state |ψ⟩ and makes two output qubits. Each output
state is described by a reduced density matrix with the following form,

ρ = η|ψ⟩⟨ψ | + (1 − η)
I
2
. (141)
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Here, η described the shrinking of the initial Bloch vector s⃗ corresponding to the density matrix |ψ⟩⟨ψ |. In other words, the
output state is

ρ =
I + ηs⃗ · σ⃗

2
,

with the input state being

|ψ⟩⟨ψ | =
I + s⃗ · σ⃗

2
. (142)

We assume that any quantum cloning machine satisfies the following reasonable conditions according to requirement
of all QKD protocols: First, ρ1 = ρ2, which is called symmetry condition. Second, F = Tr(ρψρ1) = const., which is called
isotropy condition meaning that the fidelity between each output and the input does not depend on the specified form of
the input. Stronger condition s⃗1 = ηψ ψ⃗ is required by orientation invariance of the Bloch vector. It is obvious that when the
last condition is satisfied, the second will be satisfied.

Next let us investigate the explicit form of the quantum cloning machine. Bruß et al. (1998a) make a general ansatz for
the unitary transformation U performed by the cloning machine. They are,

U|0⟩|0⟩|X⟩ = a|00⟩|A⟩ + b1|01⟩|B1⟩ + b2|10⟩|B2⟩ + c|11⟩|C⟩, (143)

U|1⟩|0⟩|X⟩ = ã|11⟩|Ã⟩ + b̃1|10⟩|B̃1⟩ + b̃2|01⟩|B̃2⟩ + c̃|00⟩|C̃⟩ (144)

where |X⟩ is an input ancilla. And |A⟩, |Bi⟩, . . . denote output ancilla states. Ancilla states may have any dimension but
are required to be normalized. There are several constraints for these parameters. Thanks to the unitarity of the cloning
transformation, the complex parameters a, bi, c . . . satisfy the normalization conditions:

|a|2 + |b1|2 + |b2|2 + |c|2 = 1,

|ã|2 + |b̃1|2 + |b̃2|2 + |c̃|2 = 1, (145)

and the orthogonality condition:

a∗c̃⟨A|C̃⟩ + b∗

2b̃1⟨B2|B̃1⟩ + b∗

1b̃2⟨B1|B̃2⟩ + c∗ã⟨C |Ã⟩ = 0. (146)

Assume that the cloning machine works in symmetric subspace, more relations are derived

|b1| = |b2|, |b̃1| = |b̃2|,

|⟨B1|B̃2⟩| = |⟨B2|B̃1⟩|, |⟨B1|B̃1⟩| = |⟨B2|B̃2⟩|, (147)

and

ab∗

1⟨B1|A⟩ + c∗b2⟨C |B2⟩ = ab∗

2⟨B2|A⟩ + c∗b1⟨C |B1⟩,

b̃∗

1a⟨B̃1|A⟩ + ã∗b1⟨Ã|B1⟩ = b̃2a⟨B̃2|A⟩ + ã∗b2⟨Ã|B2⟩,

b∗

1 c̃⟨B1|C̃⟩ + c∗b̃1⟨C |B1⟩ = b∗

2 c̃⟨B2|C̃⟩ + c∗b̃2⟨C |B̃2⟩. (148)

Moreover, letting shrink factor remaining constant ratio within each direction in Bloch sphere, one has,

s1x
sψx

=
s1y
sψy

=
s1z
sψz

= ηψ . (149)

Applied in the transformation, we may derive further constraints:

|a|2 − |c|2 = |ã|2 − |c̃|2

|a|2 − |c|2 = Re[b̃1
∗

a⟨B̃1|A⟩ + ã∗b1⟨Ã|B1⟩],

Im[b̃1
∗

a⟨B̃1|A⟩ + ã∗b1⟨Ã|B1⟩] = 0,

b∗

1 c̃⟨B1|C̃⟩ + c∗b̃1⟨C |B̃1⟩ = 0,
b∗

2a⟨B2|A⟩ + c∗b1⟨C |B1⟩ = 0,

b̃2
∗

ã⟨B̃2|Ã⟩ + c̃∗b̃1⟨C̃ |B̃1⟩ = 0,

c̃∗a⟨C̃ |A⟩ − ã∗c⟨Ã|C⟩ = 0,
and symmetrically,1 ↔ 2. (150)

Here, notation 1 ↔ 2 indicates the above constraints changing indices 1 with 2 according to the symmetry condition.
Our task is to maximize the shrinking factor η with its explicit form taken as,

η = |a|2 − |c|2. (151)
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The fidelity which is defined as

F = Tr(ρ1|ψ⟩⟨ψ |) =
1
2
(1 + s⃗1 · s⃗ψ ) (152)

is related to the shrinking factor as

F =
1
2
(1 + η). (153)

Note that this relationship between fidelity and shrinking factor holds only for pure states. The study of mixed state has
already been presented in the previous sections. The above discussions are regardless of the specified QKD protocols.

5.3. Quantum cloning of two non-orthogonal states

Next, we will consider the situation of B92 protocol in which only two qubits are required to be cloned. Now, we firstly
prove that ancilla is necessary in our cloning machine. Without ancilla, we could write down constraints as: |a|2 − |c|2 =

|ã|2 − |c̃|2, |a|2 − |c|2 = Re[b̃1
∗

a + ã∗b1], b∗

2a + c∗b1 = 0, and b̃2
∗

ã + c̃∗b̃1 = 0. Adding symmetric ansatz, we have
|b1| = |b2| = |b| and |b̃1| = |b̃2| = |b̃|.

From these constraints we would have four possible results: (a), |a| = |c| and |ã| = |c̃|, (b), |a| = |c| and |b̃| = 0, (c),
|b| = 0 and |ã| = |c̃|, and (d), |b| = 0, and |b̃| = 0. For each case, we have η = 0 which seems meaningless. Consequently,
it is impossible to generate a symmetric quantum cloning machine without ancilla.

In the following, we will explicitly give the form of the quantum cloning machine and the fidelity in this case. Assume
two pure states in a two-dimensional Hilbert space with expressions:

|a⟩ = cos θ |0⟩ + sin θ |1⟩, (154)
|b⟩ = sin θ |1⟩ + cos θ |0⟩, (155)

where θ varying from 0 to π/4. Define S = ⟨a|b⟩ = sin 2θ . We may imagine that the fidelity only dependents on S because
we could transform every 2 states into the above form by only unitary operation without influence the fidelity.

Since there are too many constraints to give strict algebraic calculations, we utilize the symmetry in the B92 protocol to
simplify the calculations. Performing an unitary operator U on the input states, we define final states |α⟩ and |β⟩ as

|α⟩ = U|a⟩|0⟩, |β⟩ = U|b⟩|0⟩. (156)

Since U is an unitary transformation, we could derive

⟨α|β⟩ = ⟨a|b⟩ = sin 2θ = S. (157)

Using global fidelity Fg to evaluate the quantum cloning, which is defined as

Fg =
1
2
(|⟨α|aa⟩|2 + |⟨β|bb⟩|2) (158)

Certainly, optimal cloning machine needs that both |α⟩ and |β⟩ lying in the space spanned by vectors |aa⟩ and |bb⟩. Without
complicated calculations, we would obtain maximal global fidelity as

Fg =
1
4
(

1 + sin2 2θ

√
1 + sin 2θ + cos 2θ

√
1 − sin 2θ)2. (159)

Additionally, we are also interested with the local fidelity of each output qubit with the input one, which is defined as

Fl = Tr[ρα|a⟩⟨a|]. (160)

The explicit result is,

Fl,1 =
1
2


1 +

1 − S2
√
1 + S2

+
S2(1 + S)
1 + S2


. (161)

Wemay notice that it is larger than 5/6. That is to say, for this protocol, state-dependent cloningmachine works better than
UQCM as expected. It is also noticed that the Bloch vector not only shrinks but also makes a rotation with a state-dependent
angle ϑ:

ϑ = arccos


1
|⃗s|

cos 2θ
1 + sin2 2θ


− 2θ. (162)

This is caused by that one constraint presented previously is released.
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Fig. 5. The equatorial qubits are qubits which are located on the equator of the Bloch sphere. The optimal cloning machine for those states is the phase-
covariant quantum cloning machine. This machine is also optimal for cloning BB84 like states.

We should emphasize that this result is derived under the request of maximum global fidelity rather than maximum
local fidelity. When we only need a better state-dependent cloning machine locally, we may have different consequences.
And the fidelity is given by:

Fl,3 =
1
2

+

√
2

32S
(1 + S)(3 − 3S +


1 − 2S + 9S2)×


−1 + 2S + 3S2 + (1 − S)


1 − 2S + 9S2. (163)

Moreover, it could be tested that the minimum value Fl,3 ≈ 0.987 is derived when S = 1/2. And when S = 0 and S = 1,
one finds F = 1 as expected.

In addition, we should note that different concerning in the eavesdropping would lead to variant results. In B92 protocol,
direct cloning is not the most advisable action for Eve if she wishes to be most surreptitious. In fact, Eve’s main purpose is
not to clone the quantum information which is embodied in the two nonorthogonal quantum states, but rather to optimize
the trade-off between obtaining most classical information versus making the least disturbance on the original qubit Fuchs
and Peres (1996).Wemay name it the optimal eavesdroppingwhich is different from optimal cloning. In (Bruß et al., 1998a),
fidelity for optimal eavesdropping is expressed as

Fl,2 =
1
2

+

√
2
4


(1 − 2S2 + 2S3 + S4)+ (1 − S2)


(1 + S)(1 − S + 3S2 − S3). (164)

Note that, for all S, Fl,2 ≥ Fl,3.
Here we have a short summary, the general state-dependent cloning machine works better than UQCM when applied

to a certain number of states. We give the special case of two nonorthogonal pure states. It is obviously that, if we know
the ensemble of states used in one QKD protocol, state-dependent cloningmachine can be designed accordingly. Besides for
QKD protocols, various quantummachines themselves are of fundamental interests. As an extension of B92 protocol, Koashi
and Imoto considered the quantum cryptography by two mixed states (Koashi and Imoto, 1996).

5.4. Phase-covariant quantum cloning: economic quantum cloning for equatorial qubits

In this subsection, we will discuss quantum cloning machine for BB84 states, which is first studied in Bruß et al. (2000a).
For convenience, wewill also refer those four states {(|0⟩±|1⟩)/

√
2, (|0⟩± i|1⟩)/

√
2} as the BB84 states. In fact, the cloning

machine of BB84 states is proved to be able to copy all equatorial states optimally. It has a higher fidelity than that of the
UQCM. Moreover, this kind of quantum cloning machine is able to work without the help of the ancilla states. It is thus the
economic quantum cloning.

It is interesting to find that any quantum cloning machine that clones BB84 states equally well will also clone equatorial
states with the same fidelity. We know that the equatorial qubits are located on the equator of the Bloch sphere which take
the form, |ψ(φ)⟩ = (|0⟩ + eiφ |1⟩)/

√
2 see Fig. 5. Since each output qubit can be represented as the mixture of input state

and the completelymixed state and the corresponding fidelity does not depend on the phase φ, this kind of cloningmachine
is ‘‘phase covariant’’. It is named generally as the phase-covariant quantum cloning machine.

Consider a completely positivemap T that could clone optimally the four states of BB84. Perform T on those states would
lead to approximate result:

T [| ± x⟩⟨±x|] = η| ± x⟩⟨±x| + (1 − η)
I
2
, (165)

T [| ± y⟩⟨±y|] = η| ± y⟩⟨±y| + (1 − η)
I
2
. (166)
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On the other hand, equatorial states could be written as

|ψ(φ)⟩⟨ψ(φ)| =
1
2
(I + cosφσx + sinφσy). (167)

This is the qubits in x–y equator. Similarly we have qubits in x–z equator such as BB84 states and in y–z equator. Perform
linear operation T on it and consider T (I) = I, we derive

T [|ψ(φ)⟩⟨ψ(φ)|] = η|ψ(φ)⟩⟨ψ(φ)| + (1 − η)
I
2
. (168)

The shrinking factor η remains unchanged. Therefore, we could conclude that optimal cloning machine performed for the
BB84 states is equivalent to phase covariant cloning machine.

Next, we release the above constraint that the single output qubit takes the scalar form (168). We only need that the
fidelity does not depend on the phase parameter φ in quantum cloning. We first consider the economic case, which is
accomplished without ancilla. Phase-covariant quantum cloning machine is presented in the following as proposed by Niu
and Griffiths (1999),

|0⟩|0⟩ → |0⟩|0⟩,
|1⟩|0⟩ → cos η|1⟩|0⟩ + sin η|0⟩|1⟩, (169)

where η ∈ [0, π/2] means the asymmetry between the two output states. And when η = π/4 the two output states are
equivalent, corresponding to the symmetric case.

For any equatorial state |ψ(φ)⟩ =
1

√
2
(|0⟩ + eiφ |1⟩)which is the input state, we have

|ψ(φ)⟩|0⟩ →
1

√
2
(|00⟩ + cos ηeiφ |10⟩ + sin ηeiφ |01⟩). (170)

So we could easily obtain the reduced matrix of each states,

ρA = TrB(|ψ(φ)⟩⟨ψ(φ)|)

ρB = TrA(|ψ(φ)⟩⟨ψ(φ)|). (171)

Then, as to any equatorial state |ψ(φ)⟩, we have fidelity defined as F = ⟨ψ |ρ|ψ⟩:

FA =
1
2
(1 + cos η), (172)

FB =
1
2
(1 + sin η). (173)

Obviously, fidelities are independent of φ as expected. Particularly, for symmetric case η = π/4, the fidelity is

F = 1/2 + 1/
√
8 ≈ 0.85355 >

5
6

≈ 0.833333. (174)

In other words, phase covariant cloning machine behaves better than UQCM in cloning equatorial states. Phase-covariant
quantum cloning machine can also be realized with ancillary states in a different form. The related results of phase cloning
can be found in Acín et al. (2004b); Bruß et al. (2000a); Durt and Du (2004); Griffiths and Niu (1997). The experimental
implementation of this scheme is reported in optics system and nuclear magnetic resonance system (Cernoch et al., 2006;
Du et al., 2005).

5.5. One to many phase-covariant quantum cloning machine for equatorial qubits

For quantum cloning, we are always interested in the case that multi-copies created from some fewer identical input
states. The simplest extension of 1 → 2 is one to many quantum cloning, i.e. 1 → M phase-covariant quantum
cloning. Based on the cloning transformations similar to the UQCM (Gisin andMassar, 1997), for arbitrary equatorial qubits,
|Ψ ⟩ = (|↑⟩ + eiφ |↓⟩)/

√
2, it is assumed that the cloning transformations take the following form (Fan et al., 2001b),

U1,M |↑⟩ ⊗ R =

M−1
j=0

αj|(M − j)↑, j↓⟩ ⊗ Rj,

U1,M |↓⟩ ⊗ R =

M−1
j=0

αM−1−j|(M − 1 − j)↑, (j + 1)↓⟩ ⊗ Rj, (175)

where R denotes the initial state of the copy machine and M − 1 blank copies, Rj are orthogonal normalized states of the
ancillary (ancilla), and |(M − j)ψ, j)ψ⊥⟩ denotes the symmetric and normalized state with M − j qubits in state ψ and j
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qubits in state ψ⊥. We already know the result of universal case: For arbitrary input state, the case αj =


2(M−j)
M(M+1) is the

optimal 1 → M universal quantum cloning (Gisin and Massar, 1997).
Nextwe consider the case that the input states being restricted to the equatorial qubits. It is assumed that phase-covariant

transformations satisfy some properties: it possesses the orientation invariance of the Bloch vector and that the output
states are in symmetric subspace which naturally ensure that we have identical copies. The unitarity and the normalization
is satisfied by

M−1
j=0 α2

j = 1. We now wish that the optimal phase-covariant cloning machine can be achieved. Let us see
fidelity which is found to take the form,

F =
1
2
[1 + η(1,M)], (176)

where

η(1,M) =

M−1
j=0

αjαM−1−j
C j
M−1

C j
MC j+1

M

. (177)

From this result, it is straightforward to examine two special cases, M = 2, 3. For M = 2, we have α2
0 + α2

1 = 1 and
η(1,M) =

√
2α0α1. In case α0 = α1 = 1/

√
2, the fidelity achieves the maximum. For M = 3, we have α2

0 + α2
1 + α2

2 = 1,
and

η(1, 3) =
2
3
α2
1 +

2
√
3
α0α2. (178)

For α0 = α2 = 0, α1 = 1, we have η(1, 3) =
2
3 , which is the optimal value and it reproduces the case of quantum triplicator

for x − y equatorial qubits as presented below,

|↑⟩ →
1

√
3
(|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩),

|↓⟩ →
1

√
3
(|↓↓↑⟩ + |↓↑↓⟩ + |↑↓↓⟩). (179)

Note that the fidelity of this quantum triplicator is 5/6 which is the same as the 1 → 2 UQCM.
We next review the result of 1 to M phase-covariant quantum cloning transformations. When M is even, we suppose

αj =
√
2/2, j = M/2 − 1,M/2 and αj = 0, otherwise. When M is odd, we can suppose αj = 1, j = (M − 1)/2 and αj = 0,

otherwise. The corresponding fidelities are F =
1
2 +

√
M(M+2)
4M for M is even, and F =

1
2 +

(M+1)
4M for M is odd. The explicit

cloning transformations have already been presented in (175).
The above fidelities forM = 2, 3 cases can be found easily being optimal. We next prove that for generalM , the fidelities

shown above achieve the maximum as well (Fan et al., 2001b). As we just reviewed, the method introduced in Gisin and
Massar (1997) for UQCM can also be applied in this phase-covariant case. Here, we try to present a more general formula
by considering N to M cloning transformation. This formula incorporates the coefficients in the unitary transformation to
the un-normalized ancillary states. We expect that this formula can be used to study the general optimal N → M phase-
covariant quantum cloning which is still an open question. We then will reduce from the general formula to the simple case
N = 1 to reach our conclusion.

By expansion, the N identical input states for equatorial qubits can be written as,

|Ψ ⟩
⊗N

=

N
j=0

eijφ

C j
N |(N − j)↑, j↓⟩. (180)

The most general N to M quantum cloning machine for equatorial qubits is expressed as

|(N − j)↑, j↓⟩ ⊗ R →

M
k=0

|(M − k)↑, k↓⟩ ⊗ |Rjk⟩, (181)

where R still denotes the M − N blank copies and the initial state of the cloning machine, and |Rjk⟩ are unnormalized final
states of the ancilla. By using the unitarity condition,we know that the ancillary states should satisfy the following condition,

M
k=0

⟨Rj′k|Rjk⟩ = δjj′ . (182)

Substitute the input state (180) into the cloning transformation (181), we obtain the whole output state with ancillary state,

|Ψ ⟩
⊗N

→

N
j=0

eijφ

C j
N

M
k=0

|(M − k)↑, k↓⟩ ⊗ |Rjk⟩. (183)
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By tracing out the ancillary state, the output state ofM-qubit takes the form,

ρout
=


j′,k′,j,k

ei(j−j′)φ

C j
NC

j′
N⟨Rj′k′ |Rjk⟩|(M − k)↑, k↓⟩⟨(M − k′)↑, k′

↓|. (184)

The one-qubit reduced density operators are the samewhich is ensured by the symmetric space representation. The fidelity
between input and output of one-qubit can then be calculated as

F = ⟨Ψ |ρout
red.|Ψ ⟩ =


j′,k′,j,k

⟨Rj′k′ |Rjk⟩Aj′k′jk, (185)

where ρout
red. is the density operator of each output qubit by taking partial trace overM − 1 output qubits with only one qubit

left. We impose the condition that the output density operator has the property of Bloch vector invariance, and also we next
consider the simple case N = 1,

Aj′k′jk =
1
4


δj′jδk′k + (1 − δj′j)


δk′,(k+1)

√
(M − k)(k + 1)

M
+ δk,(k′+1)

√
(M − k′)(k′ + 1)

M


, (186)

where j, j′ = 0, 1 for case N = 1. The optimal fidelity of this cloning machine for equatorial qubits corresponds to the
maximal eigenvalue λmax of matrix A by F = 2λmax (Gisin and Massar, 1997). The matrix A (186) is a block diagonal matrix
with block B given by,

B =
1
4

 1
√
(M − k)(k + 1)

M√
(M − k)(k + 1)

M
1

 . (187)

Thus we now can confirm that the optimal fidelities of 1 toM cloning machine for equatorial qubits takes the form,

F = 2λmax =


1
2

+

√
M(M + 2)

4M
, M is even,

1
2

+
(M + 1)

4M
, M is odd.

(188)

Explicitly, the corresponding 1 → M optimal phase-covariant quantum cloning can be written as:

1. M is even, supposeM = 2L, we have

|↑⟩ →

√
2
2

|(L + 1)↑, (L − 1)↓⟩ ⊗ R0 +

√
2
2

|L↑, L↓⟩ ⊗ R1,

|↓⟩ →

√
2
2

|L↑, L↓⟩ ⊗ R0 +

√
2
2

|(L − 1)↑, (L + 1)↓⟩ ⊗ R1. (189)

2. M is odd, supposeM = 2L + 1, we have

|↑⟩ → |(L + 1)↑, L↓⟩,

|↓⟩ → |L↑, (L + 1)↓⟩. (190)

Note that those transformations (189) have ancillary states R0, R1. The simplest economic casewithout these ancillary states
has been presented in (169). The general economic case equivalent with Eq. (189) can be written as,

|↑⟩ → |(L + 1)↑, (L − 1)↓⟩

|↓⟩ → |L↑, L↓⟩. (191)

The optimal phase-covariant quantum cloning for the general N → M case still seems elusive, some related results and
the phase-cloning of qutrits can be found in D’Ariano and Macchiavello (2003). The one to three phase-covariant quantum
cloning is realized in optics system (Sciarrino and De Martini, 2005).

5.6. Phase quantum cloning: comparison between economic and non-economic

It seems that phase quantum cloning with input |ψ⟩ =
1

√
2
(|0⟩ + eiφ |1⟩) can be realized by both economic and non-

economic transformations with completely the same optimal fidelity. We suppose that qubit implemented by quantum
device is precious, so we should prefer to economic phase cloning.

On the other hand, there exist some subtle differences between those two cases which are not generally noticed. For
convenience, let us present explicitly those transformations. From the general results in Eq. (189), the optimal phase-
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covariant cloning transformation takes the form,

|0⟩ →
1

√
2
|00⟩|0⟩a +

1
2
(|01⟩ + |10⟩) |1⟩a,

|1⟩ →
1

√
2
|11⟩|1⟩a +

1
2
(|01⟩ + |10⟩) |0⟩a, (192)

where the subindex a denotes the ancillary state. With the help of Eq. (191), the economic phase-covariant cloning takes
the following form, which is also presented in Eq. (169) and here we choose asymmetric parameter η = π/4,

|0⟩ → |0⟩|0⟩,

|1⟩ →
1

√
2
(|1⟩|0⟩ + |0⟩|1⟩). (193)

We already know that the fidelities of both economic and non-economic are the same and optimal, see Eq. (174),

Foptimal =
1
2

+


1
8
. (194)

The single qubit reduced density matrix of output from (192) can be calculated as,

ρred. =
1

√
2
|ψ⟩⟨ψ | +


1
2

−


1
8


I =


1
2

1
√
8
e−iφ

1
√
8
eiφ

1
2

 . (195)

It takes the scalar form, i.e., the single output can be written as a mixture of input qubit and a completely mixed state I/2.
In comparison, the single qubit reduced density matrix of output from economic case is,

ρeco.
red. =


3
4

1
√
8
e−iφ

1
√
8
eiφ

1
4

 . (196)

This form does not satisfy the scalar form. It also means relation T (I) = I is not satisfied.
In eavesdropping of well known BB84 QKD, because all four states |0⟩, |1⟩, 1/

√
2(|0⟩ + |1⟩), 1/

√
2(|0⟩ − |1⟩) can be

described by |Ψ ⟩ = cos θ |0⟩ + sin θ |1⟩. So, instead of the UQCM, we should at least use the cloning machine for equatorial
qubits in eavesdropping. Actually in individual attack, we cannot do better than the cloning machine for equatorial qubits
(Bruß et al., 2000a). The cloning machine presented in Eqs. (193) and (192) can be used in analyzing the eavesdropping of
other two mutually unbiased bases 1/

√
2(|0⟩ − |1⟩), 1/

√
2(|0⟩ + |1⟩), 1/

√
2(|0⟩ + i|1⟩), 1/

√
2(|0⟩ − i|1⟩)which belong to

|ψ⟩ = (|0⟩ + eiφ |1⟩)/
√
2.

5.7. Phase-covariant quantum cloning for qudits

The phase quantum cloning can be applied to higher dimensional system. For qutrit case, the optimal fidelity was
obtained by D’Ariano and Lo Presti (2001) and Cerf et al. (2002b);

F =
5 +

√
17

12
, for d = 3. (197)

In this review, we consider the general case in d-dimension (Fan et al., 2003).
The input state is restricted to have the sample amplitude parameter but have arbitrary phases

|ψ⟩ =
1

√
d

d−1
j=0

eiφj |j⟩, (198)

where phases φj ∈ [0, 2π), j = 0, . . . , d − 1. A whole phase is not important, so we can assume φ0 = 0. For comparing the
input and the single qudit output, here we write the density operator of input as ρ(in) =

1
d


jk e

i(φj−φk)|j⟩⟨k|. Our aim is to
find the optimal quantum cloning transformations so that each output qudit is close to this input density operator.

Considering the symmetries, we can propose the following simple transformations,

U|j⟩|Q ⟩ = α|jj⟩|Rj⟩ +
β

√
2(d − 1)

d−1
l≠j

(|jl⟩ + |lj⟩)|Rl⟩, (199)



H. Fan et al. / Physics Reports 544 (2014) 241–322 281

where α, β are real numbers, and α2
+ β2

= 1. Actually letting α, β to be complex numbers does not improve the fidelity.
|Rj⟩ are orthonormal ancillary states.

Substituting the input state (198) into the cloning transformation and tracing out the ancillary states, the output state
takes the form

ρ(out) =
α2

d


j

|jj⟩⟨jj| +
αβ

d
√
2(d − 1)


j≠l

ei(φj−φl) [|jj⟩(⟨jl| + ⟨|lj|)+ (|jl⟩ + |lj⟩)⟨ll|]

+
β2

2d(d − 1)


jj′


l≠j,j′

ei(φj−φj′ )(|jl⟩ + |lj⟩)(⟨lj′| + ⟨j′l|). (200)

Then, we can obtain the single qudit reduced density matrix of output

ρ
(out)
red. =

1
d


j

|j⟩⟨j| +


αβ

d


2

d − 1
+
β2(d − 2)
2d(d − 1)


j≠k

ei(φj−φk)|j⟩⟨k|. (201)

The fidelity can be calculated as

F =
1
d

+ αβ

√
2(d − 1)

d
+ β2 d − 2

2d
. (202)

Now, we need to optimize the fidelity under the restriction α2
+ β2

= 1. We can find the optimal fidelity of 1 to 2 phase-
covariant quantum cloning machine can be written as

Foptimal =
1
d

+
1
4d
(d − 2 +


d2 + 4d − 4). (203)

The optimal fidelity is achieved when α, β take the following values,

α =


1
2

−
d − 2

2
√
d2 + 4d − 4

 1
2

,

β =


1
2

+
d − 2

2
√
d2 + 4d − 4

 1
2

. (204)

In case d = 2, 3, this results reduce to previous known results (174), (197), respectively. As expected, this optimal fidelity
of phase-covariant quantum cloning machine is higher than the corresponding optimal fidelity of UQCM,

Foptimal > Funiversal = (d + 3)/2(d + 1). (205)

These are the optimal phase-covariant quantum cloning machine for qudits (199), (204) and the optimal fidelity (203).

5.8. Symmetry condition and minimal sets in determining quantum cloning machines

In this subsection, we will mainly discuss how symmetry condition determines the form of quantum cloning machine.
We will also consider the minimal sets in determining those quantum cloning machines.

As we shown, the number of BB84 states is four. The optimal cloning of those four states actually can clone optimally
arbitrary corresponding equatorial qubits. This means that BB84 states are enough in determining the phase-covariant
quantum cloning machine. We would come up with a question that whether they are the minimal input sets necessarily for
the phase-covariant cloning. It is revealed that the set of BB84 states is not the minimal input set. The minimal set which
determines the phase cloningmachine is supposed to possess the highest symmetry in Bloch sphere with the number three.
Here, we give a brief proof.

Consider three input states 1
√
2
(|0⟩ + eiφ |1⟩) where φ = 0, 2π/3, 4π/3 which are finite numbers. We suppose that the

quantum cloning machine works in symmetric subspace and is economic. The most general form can be written as,

|0⟩ → a|00⟩ + b|01⟩ + c|10⟩ + d|11⟩,
|1⟩ → e|00⟩ + f |01⟩ + g|10⟩ + h|11⟩, (206)

where a to h are complex numbers which satisfy constrains |a|2 + |b|2 + |c|2 + |d|2 = 1, |e|2 + |f |2 + |g|2 + |h|2 = 1
and ae∗

+ bf ∗
+ cg∗

+ dh∗
= 0 due to orthogonal and normalizing conditions. Because the machine works in symmetric

subspace, we have b = c and f = g . It is easily calculated that the fidelity for arbitrary input equatorial state is,

FA(φ) =
1
2

+
1
2
Re[ac∗e(iφ) + ag∗

+ ec∗e(2iφ) + eg∗e(iφ) + bd∗e(iφ) + fh∗e(iφ) + fd∗e(2iφ) + bh∗
]. (207)
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Simplify the expression by utilizing constrains above, we find

FA(φ) = λ1 cos(2φ + ψ1)+ λ2 cos(φ + ψ2)+ λ3, (208)

where λi, i = 1, 2, 3, are real numbers. Explicit expressions of these parameters are: λ1 =
1
2 |ec

∗
+ fd∗

|,ψ1 = arg(ec∗
+ fd∗),

ψ2 =
1
2 |ac

∗
+ eg∗

+ bd∗
+ fh∗

|, ψ2 = arg(ac∗
+ eg∗

+ bd∗
+ fh∗), and λ3 =

1
2 +

1
2Re(ag

∗
+ bh∗).

Additionally, we let the cloning fidelities for those three states being the same: F(0) = F(2π/3) = F(4π/3). Thus,
we will obtain two more constraints: λ1 sinψ1 = λ2 sinψ2, λ1 cosψ1 + λ2 cosψ2 = 0. With the help of some algebraic
inequalities, one would find that F reaches its maximum value if and only if λ1 = λ2 = 0. Nowwe are ready to find a simple
form of the fidelity for the three input states,

FA = λ3. (209)

Remarkably, this result demonstrates that for any φ, FA is independent of the phase parameter φ. This cloning machine
becomes the standard phase-covariant quantum cloning machine. Note that three states constituting the minimal input
set have been studied from the viewpoint of designing quantummeasurement technique for optimal quantum information
detection (Peres and Wootters, 1991).

We have just shown that the phase-covariant quantum cloning machine can be determined completely by a minimal
input set with only three symmetric states. Here we would like to remark two points: (i) We know that the phase cloning
may take two different forms with or without the ancillary states. The minimal input set is studied for the economic case
in the above, we would like to point out that the cloning fidelity cannot be increased with the help of the ancillary states.
Thus, the conclusion that this minimal input set can determine the phase-covariant quantum cloning are for both economic
and non-economic cases. (ii) We have just reviewed the 1–2 cloning. If we would like to clone equally well these three
states presented above to M copies, the 1 → M phase-covariant quantum cloning machine is the optimal one. So this
minimal input set can also determine completely the 1 → M phase-covariant cloning machine. Those two conclusions can
be obtained by similar investigations as just reviewed.

Wemay find that theminimal input set contains three stateswhich have a geometric symmetry in two dimensionHilbert
space. It seems not obvious what kind of symmetry should be possessed for the minimal input set for phase-covariant
quantum cloning in higher dimensional system. This is an open question and might be explored further. Not only for the
case of phase-covariant quantum cloning, the UQCM has similar question. We already know that the minimal input set for
UQCM of two dimension is constituted by four states forming a tetrahedron on Bloch sphere, see Fig. 4. It is not clear what
is the minimal input set of UQCM in higher dimensional system.

We know that the fidelity of 1 → ∞ phase quantum cloning is corresponding to quantum phase estimation
(Derka et al., 1998). The result, that the quantum phase cloning of states with arbitrary phase is equivalent to the cloning of a
finite ensemble including only three special states,may shed light on the quantum state estimation of some fixed ensembles.
Besides the case that input states are restricted to the equator of the Bloch sphere, there are some other cases where the
input states may be located on a belt of the Bloch sphere (Hu et al., 2009), or with other distributions. It will interesting to
study the minimal input sets for those quantum cloning machines.

5.9. Quantum cloning machines of arbitrary set of MUBs

Here, we discussed the higher dimension quantum cloning of the mutual unbiased basis(MUB). It is known that a Hilbert
space of d dimension contains d+1 sets ofMUB, provided d is prime. In this review,whenMUBs are used, wewill restrict our
attentions on case d is prime. We can design QKD protocols by using arbitrary sets of MUBs. For example, in 2 dimensional
system, we have twowell accepted QKD protocols, six-state protocol means 3 sets of MUBs and BB84 protocol means 2 sets.
In higher dimension, we can also propose corresponding cloning machines for those sets of MUBs.

Let us first present some characteristics of MUBs. In a system of dimension d, there are d + 1 MUBs (Bandyopadhyay
et al., 2002), namely {|i⟩} and {|ĩ(k)⟩}(k = 0, 1, . . . , d − 1), are expressed as,

|ĩ(k)⟩ =
1

√
d

d−1
j=0

ωi(d−j)−ksj |j⟩, (210)

with sj = j + · · · + (d − 1) and ω = ei
2π
d . Any states in the same set are orthogonal ⟨ĩ(k) |̃l(k)⟩ = δil, and any states in

different sets satisfying |⟨ĩ(k) |̃l(j)⟩| =
1

√
d
, k ≠ j, that is their overlaps are the same. Define the generalized Pauli matrices

σx and σz as, σx|j⟩ = |j + 1⟩ and σz |j⟩ = ωj
|j⟩. Note that, as usual, we omit module d in equations. Then there are d2 − 1

independent PaulimatricesUmn = (σx)
m(σz)

n andUmn|j⟩ = ωjn
|j+m⟩. ThoseMUBs are eigenvectors of operatorsσz, σx(σz)k,

k = 0, 1, . . . , d − 1,

σx(σz)
k
|ĩ(k)⟩ = ωi

|ĩ(k)⟩. (211)

The result of MUBs can also be found in Wootters and Fields (1989).
A straightforward generalization of BB84 states in d-dimension is two sets of bases from those d + 1 MUBs, and the

generalization of six-state protocol is to use all d + 1 mutually unbiased bases (Cerf et al., 2002a). Suppose two MUBs are
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{|k⟩}, k = 0, 1, 2, . . . , d − 1 and its dual under a Fourier transformation,

|̄l⟩ =
1

√
d

d−1
k=0

e2π i(kl/d)|k⟩, (212)

where l = 0, 1, 2, . . . , d−1.We follow the standard QKD, Alice initially sends the state |ψ⟩, Eve can use her quantum clone
machine to copy the state and the transferring state is disturbed which is later still sent to Bob. Eve has a non-perfect copy
of the sending state and the ancillary state of her quantum cloning machine. The whole system is written as,

|ψ⟩A →

d−1
m,n=0

am,nUm,n|ψ⟩B|Bm,−n⟩E,E′ , (213)

where A, B, E, and E ′ represent Alice’s qudit, Bob’s clone, Eve’s clone, and the cloning machine. Obviously, parameters am,n
satisfy

d−1
m,n=0 |am,n|2 = 1. As we already know, |Bm,−n⟩EE′ stands for d-dimensional Bell states which is the maximally

entangled states of two qubits with explicit form:

|Bm,n⟩EE′ =
1

√
d

N−1
k=0

e2π i(kn/d)|k⟩E |k + m⟩E′ , (214)

where m, n = 0, 1, . . . , d − 1. Note that the operators Um,n can be expressed as,

Um,n =

d−1
k=0

e2π i(kn/d)|k + m⟩⟨k|. (215)

They actually form a group of qudit error operations where m represents the shift errors and n is related with the phase
errors. Trace off the joint states within Eve, Bob’s clone will be a mixed state, it is the same as the state |ψ⟩ passing through
a quantum channel which will cause decoherence,

ρB =

d−1
m,n=0

|am,n|2Um,n|ψ⟩⟨ψ |UĎ
m,n. (216)

Therefore, when Alice sends states |k⟩, Bob’s fidelity is

F = ⟨k|ρB|k⟩ =

d−1
n=0

|a0,n|2. (217)

Also, when Alice sends states |̄l⟩, Bob’s fidelity is

F̄ = ⟨l̄|ρb |̄l⟩ =

d−1
m=0

|am,0|2. (218)

Consider the requirement that the cloner works equally well with these states, wemust choose the amplitude matrix as the
following form,

(am,n) =


v x · · · x
x y · · · y
...

...
. . .

...
x y · · · y

 (219)

where x, y and v are real number satisfying v2 + 2(d − 1)x2 + (d − 1)2y2 = 1. In this way, we find Bob’s fidelity is

F = v2 + (d − 1)x2. (220)
Next let us consider the state of Eve’s side. Eve performs the unitary transformation on both the transferring state |ψ⟩

and a maximally entangled state,

U =

d−1
m,n=0

amn(Umn ⊗ Um,−n × I), (221)

as shown in Eq. (213). We can find that this transformation can be rewritten in a different form as follows,

U|ψ⟩A|Φ0,0⟩E,E′ =

d−1
m,n=0

am,nUm,n|ψ⟩B|Bm,−n⟩E,E′

=


mn

bm,n|Φ−m,n⟩BE′ ⊗ Um,n|ψ⟩E . (222)
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So coefficients am,n are related with another set of coefficients bm,n as follows,

bm,n =
1
d

d−1
m′,n′=0

e2π i(nm
′
−mn′)/dam′,n′ . (223)

By using coefficients bm,n as shown in Eq. (222), the density operator of Eve takes a simple form as

ρE =

d−1
m,n=0

|bm,n|2Um,n|ψ⟩⟨ψ |UĎ
m,n. (224)

This density operator is similar as Bob’s density operator in (216) except that coefficients bm,n are used. Further, we find that
the fidelity for Eve can be expressed as,

FE = v′2
+ (d − 1)x′2 (225)

where v′, x′ and y′ corresponds to parameters of coefficients bm,n, with similar structure asmatrix in (219), which are related
with am,n by the Fourier transformations (223). Explicitly, those parameters can be written as,

x′
= [v + (d − 2)x + (1 − d)y]/d,

y′
= (v − 2x + y)/d,

v′
= [v + 2(d − 1)x + (d − 1)2y]/d. (226)

Now, both fidelities of Eve and Bob are represented by the same parameters v, x, y. Our purpose is to maximize Eve’s
fidelity FE under a given value of Bob’s fidelity F . The trade-off relation can then be found as,

FE =
F
d

+
(d − 1)(1 − F)

d
+

2
d


(d − 1)F(1 − F). (227)

Next, we consider another protocol using all available d + 1 bases. Similarly, by considering that the same fidelity is
necessary for all used bases since they are applied randomly, we derive that amplitude matrix presented in Eq. (219) must
satisfy x = y. Hence, Bob’s fidelity is

F = v2 + (d − 1)x2 = 1 − d(d − 1)x2, (228)

and Eve’s fidelity is,

FE = v′2
+ (d − 1)x′2

= 1 − d(d − 1)x′2, (229)

where v′ and x′ are expressed as

x′
= (v − x)/d

v′
= [v + (d2 − 1)x]/d. (230)

The relations induce the trade-off between two fidelities of Bob and Eve.
For higher dimension case, wemay havemore choices for QKD. Besides by using only two bases or all d+1 bases, wemay

choose any sets of mutually unbiased bases. Then corresponding cloning machines are necessary in analyzing the security.
Those general QKD protocols are studied recently in Xiong et al. (2012). By using the same arguments about the symmetry,
we can find,

ρB =

d−1
m,n=1

|amn|
2
|i + m⟩⟨i + m|, (231)

ρ̃
(k)
B =

d−1
m,n=0

|amn|
2(Umn|ĩ(k)⟩B)(B⟨ĩ(k)|UĎ

mn), (232)

ρE =

d−1
m,n=1

|bmn|
2
|i + m⟩⟨i + m|, (233)

ρ̃
(k)
E =

d−1
m,n=0

|bmn|
2(Umn|ĩ(k)⟩E)(E⟨ĩ(k)|UĎ

mn), (234)
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where k = 0, 1, . . . , g − 1. Therefore, one may easily derive the fidelities,

FB =


n

|a0n|2, (235)

F̃ (k)B =


m

|am,km|
2, (236)

FE =
1
d


m


n

amn

2, (237)

F̃ (k)E =
1
d


n


m

am,n+km

2, (238)

where k = 0, 1, . . . , g − 1. Assuming that Eve’s attack is balanced, or we say she induces an equal probability of error for
any one of the g + 1 MUBs, we have,

FB = F̃ (0)B = · · · = F̃ (g−1)
B . (239)

These constraints can determine the optimal cloner. Eve could maximize all these g + 1 fidelities simultaneously and let
them equal. This is can be realized by ‘‘vectorization’’ of the matrix elements of (amn). Define,

α⃗i = (a1,1i, . . . , ad−1,(d−1)i), (i = 0, 1, . . . , g − 1), (240)

A⃗i = (A1, . . . , Ad−1), (241)

Ai =

d−1
j≠0,i,...,(g−1)i

aij(i = 1, 2, . . . , d − 1), (242)

and the rest elements are restricted by the following equations:

d−1
j=1

|a0j|2 = FB − |a00|2, (243)

∥α⃗i∥
2

= FB − |a00|2, (i = 0, 1, . . . , g − 1). (244)

Finally, Eve’s fidelity can be expressed as

FE =
1
d

d−1
j=0

a0j


2

+

g−1
i=0

α⃗i + A⃗


2
 . (245)

By maximizing Eve’s fidelity, the above result can be further simplified by some algebraic considerations,

amn =


v, m = n = 0,
x, m = 0, n ≠ 0 or m ≠ 0, n = km,
y, otherwise,

(246)

where k = 0, . . . , g − 1, and v is a real number to be determined and x =


FB−v2
d−1 , y =


1+gv2−(g+1)FB
(d−1)(d−g) . Now we reach our

conclusion that the fidelity of Eve is,

FE =
1
d
{[v + (d − 1)x]2 + (d − 1)[gx + (d − g)y]2}. (247)

The only undetermined variable is v, we can change it so that the fidelity of Eve FE reaches the maximum depending on the
fixed fidelity of Bob. The fidelities of Bob and Eve are presented in Fig. 6 for some special cases (Xiong et al., 2012).

From this conclusion, we may easily find out the results for g = 1 and g = d which lead to results in Cerf et al. (2002a).
Also we are interested in the condition that FB = FE which is the symmetric cloning, and the remained variable v is fixed in
this case which actually takes a rather complicated form, we finally have,

F =
2
d

d − g

(g + 3)−


(g + 3)2 − 8 (d−g)(g+1)

d

. (248)

As we know, the optimal cloner for d + 1 MUBs is actually equivalent to universal quantum cloning machine. It is
interesting to know which of the above quantum cloning machine is equivalent to the phase-covariant quantum cloning
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Fig. 6. The fidelities of Bob and Eve for dimension d = 5. The number of mutually unbiased bases runs from 2 to 6. These results are presented in Xiong
et al. (2012).

machine. Stimulated by the fact that d MUBs presented in Eq. (210) only contain phase parameters but the amplitude
parameters are fixed,wemay suppose that the d-dimension phase-covariant quantumcloning should be equal to the cloning
of dMUBs. Indeed, let g = d−1, the fidelity (248) coincides with the phase-covariant fidelity in (203). To further check that
those two cloning machines are the same, we need also consider the asymmetric case.

Let us consider the equatorial qudit as, |ψ⟩ =
1

√
d

d−1
j=0 eiφj |j⟩, where φj are phase parameters. One can assume that the

asymmetric cloning transformation is given as,

|i⟩ → α|ii⟩|i⟩ +
β

√
d − 1


j≠i

(cos θ |ij⟩ + sin θ |ji⟩|j⟩), (249)

where θ is the asymmetric parameter. Therefore one can derive two fidelities for Bob and Eve, respectively,

F1 =
1
d

+
2αβ
d

√
d − 1 cos θ +

β2(d − 2)
d

cos2 θ, (250)

F2 =
1
d

+
2αβ
d

√
d − 1 sin θ +

β2(d − 2)
d

sin2 θ, (251)

where we still have α2
+β2

= 1. Here wewould like to emphasize, the exact value of α, β should depend on the parameter
θ . For symmetric case, θ = π/4, their values can be found in Eqs. (204). When θ changes, the values of α, β also change.
Numerical evidences show that those fidelities are the same with the fidelities in Eq. (247).

We know that MUBs may determine some specified quantum cloning machines which in general are better than the
universal cloningmachine which admits arbitrary input states. On the other hand, wemaywonder whether thoseMUBs are
the minimal input sets which can be copied optimally by the corresponding cloning machines. In qubit case, we know that
the number of states in the minimal input set can be reduced (Jing et al., 2012). It is not clear what are the minimal input
sets for the optimal cloning machines of those MUBs in general d dimension.

5.10. Quantum cloning in mean king problem as a quantum key distribution protocol

Quantum key distribution (QKD) protocols allow two parties, called Alice (the sender) and Bob (the receiver)
conventionally, to generate shared secret keys for them to communicate securely. In BB84 protocol Bennett and Brassard
(1984), we send states by exploiting two mutually unbiased bases of qubit. Ekert proposed a QKD protocol based on Bell
theorem by using the entangled pairs in 1991 (E91) (Ekert, 1991). As we already know that the BB84 protocol can also
be generalized by using a six-state protocol (Bruß, 1998). It is also possible to propose a QKD protocol by combination of
BB84 protocol and é1 protocol. This protocol is based on the so-called mean king problem (Vaidman et al., 1987) since its
description is usually like a tale (Englert and Aharonov, 2001).

The protocol of mean king problem, can be considered as two steps: The first step is the same as é1 protocol except
without classical announcement ofmeasurement bases and the second step is like BB84 protocol. In this protocol, Bob needs
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Fig. 7. (Color online) FEve vs FBob curve for d = 2. In our scenario, the mean king retrodiction QKD has higher security than both BB84 and six-state
protocols.

to retrodict the outcome of a projectivemeasurement by Alice without knowing the bases she used. For qubit first (Vaidman
et al., 1987) and higher dimension latter (Hayashi et al., 2005; Kimura et al., 2006), it is shown that Bob has a 100% winning
strategy. So it is realized that this quantum retrodiction protocol might be applied as a QKD in quantum cryptography (Bub,
2001; Werner et al., 2009; Yoshida et al., 2010).

In this protocol, Alice may exploit bases in a ‘‘meaner’’ way by utilizing biased (nondegenerate) bases (Reimpell and
Werner, 2007). The security of the QKD protocol is analyzed by considering a full coherent attack on both quantum channels
(Werner et al., 2009). To be explicit, Eve controls completely the preparation of entangled pairs, which are used by Bob before
sending one part of them to Alice, as well as the feedback channel which is used for transmitting back the quantum state
after ameasurement by Alice. To specify the attack, in the former scenario, Eve initially prepares amaximally entangled state
|Φ+

⟩BB′ whichwill be shared for Alice andBob. But she adversarial prepares another completely same entangled pair |Φ+
⟩EE′ ,

partially swaps her qubit with the providing entangled pair. Consequently, Alice and Bob both are partially entangled with
Eve, in contrast, they are maximally entangled with each other if no Eve exists. So the whole systemwith Alice, Bob and Eve
possesses a superposition of two pairs maximally entangled states. For the second channel, Eve is confined to only perform
a cloning-based individual attack on the particle Alice sends to Bob after her projective measurement (Bruß, 1998; Cerf,
1998; Cerf et al., 2002a; Xiong et al., 2012). The attack on this retrodiction protocol on both steps of the entangled pair
preparation and quantum state transmission can be understood from a general viewpoint by the unified quantum cloning
machine (Wang et al., 2011b). A QKD protocol is secure when mutual information between Alice and Bob is larger than
that between Alice and Eve, under this condition can Alice and Bob use classical error correction and privacy amplification
methods (Cerf et al., 2002a; Gisin et al., 2002) to guarantee a secure communication. Alternatively, we may also compare
the fidelity between Eve and Bob to see which one is closer with the ideal case.

Here let us review the comparison between different protocols in Fig. 7 which includes four cases, the standard QKD by
BB84 states and six-state, and their correspondences by retrodiction protocol. Interestingly, it is clear that the retrodiction
QKD protocol presented here is more secure than BB84 protocol and six-state protocol, i.e., with fixed disturbance (FBob is
fixed), Eve’s probability to figure out the correct result is lower. And using 3 bases (g = 2) is even more secure than 2 bases
(g = 1).

The efficiency of the mean king retrodiction has the advantage of generating a raw key in every single run no matter how
many mutually unbiased bases are utilized. For comparison, in standard QKD by exploiting g + 1 mutually unbiased bases,
there would only have a raw key in g + 1 runs on average for Alice and Bob.

5.11. Other developments and related topics

No-cloning is a fundamental principle of quantum mechanics. On the other hand, the quantum cloning machine is
concerned about to clone quantum states, approximately or probabilistically with both cases not violating the principle
of quantum mechanics, but with the highest quality measured by different figures of merit. If we know nothing about the
input quantum states, the cloning machine should be in the sense of universal as we have reviewed in last section. In case
we know partial information of the input states, we can use state-dependent cloning which performs, at least, as good as
the universal cloning machine. It is naturally expected that we can do better in most cases. The phase-covariant cloning
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machine belongs to the class of state-dependent cloning, however, we usually listed it independently. The phase-covariant
is in the sense that the density matrix of single output copy has the same form of phase with the input state density matrix,
to be more explicit, the difference of those two density matrices is a mixture of identity with a probability. This property
ensures that the fidelity of this cloning machine is independent of input states which differs only in phase parameters.

The phase-covariant quantum cloning was initiated by Bruß et al. for considering the 1–2 cloning of equatorial qubit,
which is a qubit located in the equator of the Bloch sphere (Bruß et al., 2000a). It is also shown that the cloning of equatorial
qubits is optimal if the input is restricted to only four states corresponding to BB84 states. The minimal input set which
can determine completely this optimal quantum cloning machine includes only three states located symmetrically on the
equator of the Bloch sphere (Jing et al., 2012). The more general 1–3 phase cloning case (D’Ariano and Lo Presti, 2001) and 1
tomany case are also studied (Fan et al., 2001b). For higher dimensional case, the three-dimension phase-covariant quantum
cloning is studied in Cerf et al. (2002b); D’Ariano and Lo Presti (2001), the general d-dimension phase cloning is presented
in Fan et al. (2003). Various kinds of phase-covariant and state-dependent cloning are proposed. Next, we list some of those
developments below.

• The input states for cloning are limited to some conditions, which in general can be described by some symmetries. The
cloning of states in higher-dimension, but with only real parameters is studied in Navez and Cerf (2003). The asymmetric
qudit phase-covariant quantum cloning is studied in Lamoureux and Cerf (2005). The quantum cloning of set of states
which is invariant under theWeyl–Heisenberg group is studied by the extremal cloningmachine (Chiribella et al., 2005).
The quantum cloning of states with fixed amplitudes but arbitrary phase is studied in Karimipour and Rezakhani (2002),
which is suboptimalwhile the experimental schemeuses the optimal one (Du et al., 2005). The cloning of states in a belt of
Bloch sphere is studied inHu et al. (2009). The case of distributionwithmirror like symmetry, i.e., with knownmodulus of
expectation of Pauliσz matrix is studied in Bartkiewicz et al. (2009), the case of arbitrary axisymmetric distribution on the
Bloch sphere is studied in Bartkiewicz andMiranowicz (2010), see also (Bartkiewicz andMiranowicz, 2012). The cloning
of a pair of orthogonally polarized photons is studied in Fiurasek and Cerf (2008). The optimal broadcasting of mixed
equatorial qubits is studied in Yu (2009). A hybrid quantum cloning machine combines universal and state-dependent
cases together is presented in Adhikari et al. (2007).

• The estimation of states or phases for finite quantum states. We have known that UQCM and phase-covariant cloning
machine are for states with some parameters, amplitude or phase, which can be assumed to be continuous. On the other
hand, we already know that we cannot do better for cases even the number of input states are finite, for example for
some sets of MUBs. We remark that the quantum cloning of sets of MUBs should be related with state estimation. The
results of arbitrary state estimation and phase estimation are available which correspond to g = d, d − 1, however, the
general g + 1 MUBs estimations are not yet studied. The phase estimation of qubits is studied in Derka et al. (1998), the
case of qubits in mixed states is presented in D’Ariano et al. (2005a). The phase estimation of multiple phases is studied
in Macchiavello (2003). The criterion for estimation and the quality of state-dependent cloning is analyzed in Rastegin
(2002).

• State-dependent cloning related with QKD protocols. We should note that the security of QKD is generally defined by
various criteria (Gisin et al., 2002), in this review, we consider the attack by the scheme of quantum cloning. Quantum
copying of two states is studied in Hillery and Bužek (1997). The QKD in three dimensions is studied in Bruß and
Macchiavello (2002). The four-dimensional case is studied in Bechmann-Pasquinucci and Tittel (2000); Durt and Nagler
(2003), The optimal eavesdropping of BB84 states is studied in Fuchs et al. (1997), higher-dimensional case and some
related results are presented by some other groups (Acín et al., 2003; Bae and Acin, 2007; Bourennane et al., 2001;
Karimipour et al., 2002; Kraus et al., 2005; Nikolopoulos and Alber, 2005; Nikolopoulos et al., 2006). The extension of
BB84 states for qubits is also studied as the spherical-code (Renes, 2004). The comparison between photon-number-
splitting attack and quantum cloning attack of BB84 states is studied in Niederberger et al. (2005). The extension of
phase-covariant cloning to multipartite quantum key distribution is studied in Scarani and Gisin (2001). The cloning
network of generalized BB84 states constituted by two pairs of orthogonal states is presented in Cao and Song (2004).

• Concepts related with phase-covariant and state-dependent cloning. The state-dependent cloning machine and the
relation with completely positive trace-preserving maps is studied in Carlini and Sasaki (2003). Relation of state-
dependent cloning with quantum tracking is studied in Mendonca et al. (2008). The assisted phase cloning of qudit
by remote state preparation is presented in Ma and Zhan (2009). The network of state-dependent quantum cloning
is studied in Chefles and Barnett (1999), see also (Zhou, 2011). The relations between teleportation and dissipative
channels with the universal and phase-covariant cloningmachine are analyzed in Ozdemir et al. (2007). The phenomena
of superbroadcasting is also studied for phase-covariant case (Buscemi et al., 2006). The no-cloning theorem for a single
POVM is presented in Rastegin (2010). It is found that while equatorial qubit contains only one arbitrary parameter, the
phase information cannot be compressed (Wang et al., 2012).

Quantum cloning is generally not concerned with relativity. However with relativistic covariance requirement, the
state-dependent cloning of photons and the BB84 states are studied in Bradler and Jauregui (2008). It is shown by phase-
covariant quantum cloning that the cloned quantum states are not macroscopic in the spirit of Schrödinger’s cat (Frowis
and Dür, 2012).

• Implementation theoretically and experimentally. Various proposals of implementation have been put up. The economic
realization of phase-covariant devices in arbitrary dimension, where phase cloning as a special case, is studied in Buscemi
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et al. (2007). The scheme of one to three economic phase-covariant quantum cloningmachine is proposed implementing
by linear optics system (Zou andMathis, 2005). The one tomany symmetric economic phase cloning is proposed in Zhang
et al. (2007), see also (Zhang andYe, 2009). The scheme to realize economic one tomany phase cloning for qubit and qutrit
is proposed in Zou et al. (2006). The realization of phase-covariant and real qubit states quantum cloning are presented
in Fang and Ye (2010). The phase cloning in spin networks is proposed in Chiara et al. (2004). The proposal of optical
implementation of phase cloning of qubits is presented in Fiurášek (2003), the cloning of real state is studied in Hu et al.
(2010). The one tomany phase-covariant quantum cloning is also analyzed by the general angularmomentum formalism
(Sciarrino andDeMartini, 2007). Quantum circuits for both entanglementmanipulation and asymmetric phase-covariant
cloning are studied in Levente et al. (2010).

Experimentally, the asymmetric phase cloning is realized in optical system (Bartuskova et al., 2007), and in Soubusta
et al. (2008). The ancilla-free phase-covariant cloning through Hong–Ou–Mandel interference is realized in experiment
by Khan and Howell (Khan and Howell, 2003). The one to three economic quantum cloning of equatorial qubits encoded
by polarization states of photons and the universal cloning are realized experimentally in Xu et al. (2008). Realization by
NMR system can be found in Du et al. (2005); Chen et al. (2007). In optical parametric amplification of a single photon in
the high gain-regime, experiment is performed to distribute the photon polarization state to a large number of particles
which corresponds to the phase-covariant quantum cloning (Nagali et al., 2007). The phase-covariant quantum cloning is
also implemented in nitrogen–vacancy center of diamond by using three energy levels (Pan et al., 2011), in nanodiamond
with full coherent control of phases is reported (Chang et al., 2013), this will be reviewed in detail later. The experimental
implementation of eavesdropping of BB84 states and trine states by optimal cloning is studied in Bartkiewicz et al. (2013).

6. Local cloning of entangled states, entanglement in quantum cloning

Quantum cloning is generally to find the quantum operations to realize the optimal cloning. The only restriction is
that the operations should satisfy quantum mechanics. We next study the local cloning of entangled states, in this case,
the operations are additionally restricted to be local. In principle, there is also a no-cloning theorem for entangled states
(Koashi and Imoto, 1998).

In addition, since the crucial role of quantumentanglement in quantum information, wewill also study the entanglement
properties in quantum cloning machines.

6.1. Local cloning of Bell states

Quantum entanglement plays a key role in quantum computation and quantum information. It is the precious resource
in quantum information processing. Also entanglement is a unique property of quantum system which does not have
any classical correspondence. In this sense, quantum entanglement has already become a common concept and has many
applications in various quantum systems. The study of entanglement is generally under the condition of local (quantum)
operations and classical communication (LOCC). This is due to the consideration that entanglement does not increase under
LOCC.

The local cloning of entangled states is an interesting topic (Anselmi et al., 2004; Bužek et al., 1997b; Ghosh et al., 2004;
Owari and Hayashi, 2006). First let us raise the problem: Suppose two spatially separated parties, Alice (A) and Bob (B), share
some entangled states, by LOCC, they want to copy the shared entangled states. As an example, let us study the following
problem (Ghosh et al., 2004), the four Bell states are defined as usual as the following,

|Φ+
⟩ =

1
√
2
(|00⟩ + |11⟩),

|Φ−
⟩ =

1
√
2
(|00⟩ − |11⟩) = (I ⊗ Z)|Φ+

⟩,

|Ψ+
⟩ =

1
√
2
(|01⟩ + |10⟩) = (I ⊗ X)|Φ+

⟩,

|Ψ−
⟩ =

1
√
2
(|01⟩ − |10⟩). = (I ⊗ XZ)|Φ+

⟩. (252)

Alice and Bob share one Bell states from a known subset, say {|Ψ+
⟩, |Φ+

⟩}, they want to copy this state by LOCC. Several
problems should be considered before to study this problem: (1) The entanglement between A and B does not increase under
LOCC. So to copy locally this state, we generally assume that some known entangled states, for example |Φ+

⟩, are shared
between A and B which can be used as ancilla. (2) The entanglement resource used by local copying should be minimum.
Otherwise, we can use the teleportation scheme Bennett et al. (1993), let Bob (Alice) obtain the full state {|Ψ+

⟩, |Φ+
⟩}, he

knows the state exactly by measurement, and copies of the entangled state between A and B can be obtained easily by local
unitary operations which are shown explicitly above in (252). Actually Alice and Bob can discriminate any two Bell states
by LOCC (Walgate et al., 2000; Walgate and Hardy, 2002; Ghosh et al., 2001).
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In these conditions, the problem can be explicitly stated as: Alice and Bob share either of twomaximally entangled states
{|Ψ+

⟩, |Φ+
⟩}, but they do not know which one it is. Additionally, they share known maximally entangled states in form

|Φ+
⟩ as the resource which are used as ancillary states. The question is: can they obtain the state |Ψ+

⟩
⊗2 or |Φ+

⟩
⊗2 by

LOCC? The answer is ‘yes’: both Alice and Bob do CNOT gate with the unknown qubit as the controlled qubit and the ancilla
as the target qubit, they can achieve their aim. We name this method as CNOT scheme. The key point here is that Alice and
Bob do not need to know which state they share, they can finally obtain two copies of this state, and only one known state
|Φ+

⟩ (resource) is consumed.
Let us next analyze the advantages of this scheme by comparing with the teleportation scheme. By using the available

resource |Φ+
⟩ for teleportation, the unknown state, which is either |Ψ+

⟩ or |Φ+
⟩, can be teleported to either Alice or Bob’s

side, herewe supposeAlice receives this unknown state. Alice can find the exact formof this state byusing Bellmeasurement.
Now according to the obtained information, Alice and Bob use additional two entangled resource, and can share two copies
of the previous unknownmaximally entangled state. In this process, three maximally entangled state are consumed, where
one is for teleportation, and another two are used to share betweenAlice and Bob. Since three entanglement resource is used,
this scheme is not as efficient as the CNOT scheme. If we use the local discrimination scheme, i.e., by local measurement
in {|0⟩, |1⟩} basis on the unknown entangled state, then with assistance of classical communication, we know the exact
form of the shared state (Ghosh et al., 2001; Walgate et al., 2000; Walgate and Hardy, 2002). Since resource of maximally
entangled states |Φ+

⟩ are available, by local unitary transformation, we can change two resource entangled states to the
detected known form. We still achieve the aim that two copies of an entangled state are shared between Alice and Bob. In
this scheme, two known Bell states (resource) are consumed which is not as efficiency as the CNOT scheme. On the other
hand, in order to obtain two copies of |Ψ+

⟩ or |Φ+
⟩, at least, one entangled state (resource) should be used. We already

know that the CNOT scheme uses only one entangled state (resource), it is thus optimal.

6.2. Local cloning and local discrimination

If a set of quantum states can be perfected discriminated, they can be copied perfectly since we can discriminate them
first, then prepare many copies of these states by using the available entanglement resource. For example, two orthogonal
states can be copied perfectly. We know that two Bell states can be locally discriminated, as shown in the last subsection,
they can be local cloned perfectly if a priori Bell state resource is available. Is it generally true that local discriminationmeans
local cloning being possible? In Owari and Hayashi (2006), it is stated that, in general, the local copying is more difficult than
local discrimination.

However, local cloning and local discrimination are closely related (Owari and Hayashi, 2006). The following result was
obtained in Owari and Hayashi (2006): For d-dimensional system, and suppose d is prime, a set of maximally entangled
states {|Ψj⟩}

N−1
j=0 are defined as

|Ψj⟩ = (Uj ⊗ I)|Φ+
⟩, (253)

and

Uj =

D−1
j=0

ωjk
|k⟩⟨k|, (254)

then the set {|Ψj⟩}
N−1
j=0 can be locally copied.

Here let us point out that the states of this set can be local discriminated perfectly according to the criteria proposed in
Fan (2004). The scheme can be like the following. It is known thatUj = σ

j
z , where the generalized Paulimatrix σz |k⟩ = ωk

|k⟩.
We define a class generalized Hadamard transformations as, up to an unimportant factor,

(Hα)jk = ω−jkω−αsk , (255)

where sk = k + · · · + (d − 1). We remark that those transformations correspond to the d + 1 mutually unbiased states. By
applying those Hadamard transformations, the generalized Pauli matrices transform as,

Hασm
x σ

n
z H

Ď
α = σmα+n

x σ−m
z . (256)

Now we know that σz matrix can be transformed to σx matrix, Uj → σ
j
x. Since (σ

j
x ⊗ I)


|kk⟩ =


|k + j, k⟩, that means

those states can be distinguished by LOCC, also the above transformations correspond to local unitary operations, we now
conclude that states in set {|Ψj⟩}

N−1
j=0 can be distinguished by LOCC.

We next see how those states can be cloned locally, define generalized CNOT gate as,

CNOT : |a⟩|b⟩ → |a⟩|b + a⟩, (257)

where |a + b⟩ modula d is assumed. We suppose an ancilla state |Φ+
⟩ is shared between Alice and Bob. Let both Alice and

Bob perform the generalized CNOT gate, we obtain the perfect copies |Ψj⟩
⊗2. This result can be derived as follows, according

the definition of the CNOT gate, we know that

CNOTĎ : |a⟩|b⟩ → |a⟩|b − a⟩, (258)
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It is straightforward to check that we have the following properties

|Φ+
⟩12|Φ

+
⟩34 = CNOTĎ13 ⊗ CNOTĎ24|Φ

+
⟩12|Φ

+
⟩34

= CNOT13 ⊗ CNOT24|Φ+
⟩12|Φ

+
⟩34. (259)

Then we can find
CNOT13 ⊗ CNOT24|Ψj⟩12|Φ

+
⟩34. = CNOT13 ⊗ CNOT24(Uj ⊗ I)13|Φ+

⟩12|Φ
+
⟩34

= CNOT13(Uj ⊗ I)13CNOT
Ď
13|Φ

+
⟩12|Φ

+
⟩34. (260)

And we know the following result:

CNOT(Uj ⊗ I)CNOTĎ = Uj ⊗ Uj. (261)

The operator Uj is copied. Thus by this method, a set of maximally entangled states {|Ψj⟩}
N−1
j=0 are locally copied. This

interesting phenomenon means that some unitary operators can be cloned perfectly in the above framework.
In 2-dimensional system, we have presented relations (45) for CNOT gate previously (Gottesman, 1998), (σx ⊗ I) →

σx ⊗ σx, (σz ⊗ I) → σz ⊗ I, (I ⊗ σx) → I ⊗ σx, (I ⊗ σz) → σz ⊗ σz . Those results imply that the bit flip errors are copied
forwards while the phase errors are copied backwards. But we cannot copy simultaneously the bit flip errors and phase flip
errors. This is a kind of no-cloning theorem.

Some other results about the cloning of entanglement are listed in the following. The local cloning of product states
without the shared entanglement ancilla is studied in Ji et al. (2005). Distinguishing states locally is also studied in Chen and
Yang (2001a,b); Walgate and Hardy (2002); Walgate et al. (2000). The entangled states studied are generally pure states,
however, it is shown that maximally entangled states can also be mixed which is constituted by very special structures. A
subset of those mixed maximally entangled states has similar properties as those of pure maximally entangled states, and
can be local distinguished perfectly (Li et al., 2012). The local cloning of other cases are also studied, including three-qubit
case (Adhikari and Choudhury, 2006), the continuous-variable case (Adhikari et al., 2008), orthogonal entangled states and
catalytic copying (Anselmi et al., 2004). The local cloning of partially entangled pure states in higher dimension is studied in
Li and Shen (2009). Some results of local cloning with entanglement resource are presented in Chefles et al. (2001); Collins
et al. (2001); Eisert et al. (2000).

Various schemes of quantum cloning of entanglement are studied in Karpov et al. (2005); Lamoureux et al. (2004).
Quantum cloning of continuous-variable entangled states is studied in Weedbrook et al. (2008). The cloning of entangled
photons to large scales which might be see by human eye is analyzed in Sekatski et al. (2010). The scheme of cloning
unknown entangled state and its orthogonal-complement state with some assistances is studied in Ma et al. (2009) and
also in Zhan (2005) and Fang et al. (2006), the case of arbitrary unknown two-qubit entangled state is studied in Niu
(2009). The partial quantum cloning of bipartite state, i.e., only part of the two-particle state is cloned, and the cloning
of mixed states are studied in Kazakov (2010). Coherent states cloning and local cloning are presented in Dong et al. (2008).
The disentanglement is to preserve the local properties of an entangled state but erase the entanglement between the
subsystems, it is closely related with quantum cloning and the broadcasting (Mor and Terno, 1999). The cloning machine
used as approximate disentanglement is presented in Yu et al. (2004). The two-qubit disentanglement and inseparability
correlation are presented in Zhou and Guo (2000).

6.3. Entanglement of quantum cloning

It is also of interest to know the entanglement structure of states in the quantum cloning machines. Potentially, those
properties can be used to distinguish quantum from classical since entanglement is considered to be one unique property
of quantum world.

There are much progress about the theory of entanglement, see (Horodecki et al., 2009) for a nice review. For example,
Peres–Horodecki’s criteria (Horodecki et al., 1996; Peres, 1996b) is simple to detect the entangled state. Since the output
states of the quantum cloning machines are generally available, we can use various techniques to study the entanglement
properties of the sole copies, or the whole output state of the cloning machine, or the copies with the ancillary states, etc.

In (Fan et al., 2001b), it is shown that for the 1 → 2 cloningmachines, the two copies of theUQCMare entangled,while the
two copies for the phase-covariant cloning machine are separable. Further, we can use some measures of entanglement to
quantify the entanglement. The entanglement structure or separability of the asymmetric phase-covariant quantum cloning
is studied in Rezakhani et al. (2005). The bipartite and tripartite entanglement of the output state of cloning are studied in
Bruß and Macchiavello (2003).

7. Telecloning

Quantum telecloning, as its name suggests, combines teleportation and quantum cloning so that quantum states are
distributed to some more spatially separated parties. In the well-known teleportation scheme in Bennett et al. (1993),
quantum information of an unknown d-level system is completely transmitted from a sender Alice to a remote receiver
Bob by using the resource of a maximally entangled state. It is natural to consider ‘‘one-to-many’’ and ‘‘many-to-many’’
communication via quantum channels. This is the generalized teleportation scheme discussed in Ghiu (2003); Murao et al.
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(2000). Of course, it is impossible to transmit quantum information with perfect fidelities for many copies, because the no-
cloning theorem (Wootters and Zurek, 1982) claims that an unknownquantum state cannot be cloned perfectly. However, as
we already shown, we can try to quantum clone those quantum states approximately or probabilistically which are allowed
by quantum mechanics.

As we already presented, there are various quantum cloning machines which create optimal copies. The aim of teleclone
is to create optimal copies which is the same as that of the cloning machines, in addition, we need to create optimal
copies remotely by teleportation. Those remote copies themselves may be spatially separated with each other. One may
imagine that we can use first quantum cloning machines to create optimal copies locally, then send those copies to their
destination points. The aim of teleclone can indeed be realized by this way. In this point, the importance of teleclone is like
teleportation. Instead of teleportation, we can surely use flying qubits for states transportation. However, teleportation in
the one hand provides an alternativemethod. On the other hand, in case the quantum channel is noisy, the flying qubitsmay
experience inevitable decoherence which will induce errors. The teleportation scheme can avoid this disadvantage by using
themaximally entangled state resource. Evenwhen the entanglement resource is not perfect, the non-maximally entangled
states can be purified locally to create maximally entangled states. Now we are ready to study teleclone which combines
together the quantum cloning and the quantum teleportation. Still the resource of entanglement is necessary, however, its
exact form depends on our specially designed scheme.

Murao et al. studied the optimal telecloning of 1 qubit toMqubits by usingmaximally entangled state (Murao et al., 1999).
Telecloning which transmits an unknown d-level state to M spatially separated receivers is studied in Murao et al. (2000).
And the telecloning ofN qubits toM qubits,M > N , that requires positive valued operatormeasure (POVM)was proposed in
Dür andCirac (2000). These telecloning are also called reversible telecloning because there is no loss of quantum information.
The 1 → 2 telecloning which uses nonmaximum entanglement (it is named irreversible telecloning, in comparison), is
studied in Bruß et al. (1998a), and the generalized case, 1 → M irreversible telecloning, is given in Dür (2001). Quantum
information can be encoded by states of continuous variables (CV) (Braunstein and van Loock, 2005). The teleportation of CV
is presented in van Loock and Braunstein (2000). The optimal 1 toM telecloning of CV coherent states using a (M+1)-partite
entangled state as amultiuser quantum channel is shown in van Loock and Braunstein (2001). This optimal telecloning could
be achieved by exploiting nonmaximum entanglement between the sender and receivers. So this protocol was regarded as
a CV irreversible telecloning. A scheme of CV reversible N → M telecloning,M > N , which distributes information without
loss, is presented in Zhang et al. (2006). In this scheme, besides M clones, additional M − N anti-clones are obtained at the
same time by using 2M-partite entanglement generalizing the scheme presented in Ref. Murao et al. (1999).

7.1. Teleportation

Let us review the original teleportation protocol and its generalization, i.e., the many-to-many scheme for transmitting
quantum information. The teleportation scheme is proposed in Bennett et al. (1993). Alice wants to send an unknown state
of a d-level particle to a spatially separated observer Bob with the help of quantum channel and classical communication.
Alice’s initial unknown state is,

|ψ⟩ =

d−1
k=0

αk|k⟩A, (262)

where
d−1

k=0 |αk|
2

= 1 and {|k⟩} is a complete orthogonal basis. In order to achieve the teleportation, Alice and Bob are
assumed to share a prior maximally entangled state, |ξ⟩ = |Φ+

⟩,

|ξ⟩ =
1

√
d

d−1
j=0

|j⟩P |j⟩B. (263)

The total system is, |Ψ ⟩ = |ψ⟩ ⊗ |ξ⟩, which can be rewritten as,

|Ψ ⟩ = |ψ⟩A ⊗ |ξ⟩PB =
1
d

d−1
m,n=0

|Φmn⟩AP

d−1
k=0

exp

−i

2πnk
d


αk|k + m⟩B, (264)

where k + m is assumed to module d. As standard, the generalized Bell basis are,

|Φmn⟩ =
1

√
d

d−1
k=0

exp

i
2πnk
d


|k⟩|k + m⟩. (265)

Alice performs a joint Bell-typemeasurement on the input and port particles, sends themeasurement resultm, n to receiver
Bob via classical communication. The unitary transformation which brings Bob’s particle to the original state of Alice’s is

Umn =

d−1
j=0

exp

i
2π jn
d


|j⟩⟨j + m|. (266)

As we already know, they are the generalized Pauli matrices in d dimension.
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Next, we will review the generalized symmetric teleportation scheme of N senders andM, (M > N), receivers proposed
in Ghiu (2003). Assuming the senders X1, X2, . . . , XN share an unknown, but with fixed form of entangled state |ψ⟩X =d−1

k=0 αk|ψk⟩X1 |ψk⟩X2 · · · |ψk⟩XN , where {|ψk⟩} is an orthonormal basis of d-dimensional space. This state is a generalization
of GHZ state. The quantum entangled state which is the resource, consisting of N ‘‘port’’ particles Pk(k = 1, . . . ,N) and M
receivers Ck(k = 1, . . . ,M), takes a special form which is a (N + M)-partite state,

|ξ⟩ =
1

√
d

d−1
j=0

|πj⟩P1 |πj⟩P2 · · · |πj⟩PN |φj⟩C1C2···CM , (267)

where {|πj⟩} denotes a d-dimensional orthonormal basis. The complete state of the system is,

|ψ⟩|ξ⟩ =
1

√
d

d−1
k,j=0

αk|ψk⟩X1 |πj⟩P1 |ψk⟩X2 |πj⟩P2 · · · |ψk⟩XN |πj⟩PN |φj⟩C1C2···CM

=
1

d(N+1)/2

d−1
m,n1,n2,...,nN

|Φm,n1⟩|Φm,n2⟩ · · · |Φm,nN ⟩ ⊗

d−1
k

exp

−i

2πk
d
(n1 + n2 + · · · + nN)


αk|φk+m⟩. (268)

The following steps are involved in this protocol:
1. The senders perform a joint Bell-type measurement on particles Xj and Pj and get the outcomes, |Φm,n1⟩, |Φm,n2⟩, . . . ,

|Φm,n1⟩. Here the generalized Bell states take the form |Φm,n⟩ =
1

√
d

d−1
k=0 exp

 2π ikn
d


|ψk⟩|πk+m⟩, where modulo d is

assumed.
2. The outcomes are sent to the receivers by using classical communication,
3. Then, the receivers perform a local recovery unitary operator (LRUO) that satisfies Um;n1,n2,...,nN |φk+m⟩ = exp


i 2πkd (n1 +

n2 + · · · + nN)

|φk⟩.

Several remarks are here: (i) In case that local operations are allowed, state |ψ⟩X can be transformed locally to just one
qudit,

d−1
k=0 αk|ψk⟩. (ii) The M receivers are located in spatially separated places, otherwise if they are in the same port,

local quantum operations can reversely change the qudit
d−1

k=0 αk|ψk⟩ to a generalized GHZ like state shared by M parties.
(iii) The scheme presented above combines the quantum information distribution and the teleportation together.

7.2. Symmetric 1 → M telecloning

In this subsection, we study the 1 → M generalized telecloning of qudit which is studied in Murao et al. (2000).
In that scenario, the quantum information of d-level particle is transmitted optimally from one sender X to M receivers
C1, C2, . . . , CM . One ‘‘port’’ and (M − 1) ancillary particles were involved. The resource, including the port particle and
(2M − 1) output states (M receivers and (M − 1) ancillas), is the maximally entangled state,

|ξ⟩ =
1

√
d[M]

d[M]−1
k=0

|ξMk ⟩PA|ξ
M
k ⟩C

=
1

√
d

d−1
j=0

|j⟩P ⊗

 √
d

√
d[M]

d[M]−1
k=0

P⟨j|ξMk ⟩PA|ξ
M
k ⟩C



=
1

√
d

d−1
j=0

|j⟩P ⊗ |φj⟩, (269)

where, d[M] = CN
N+d−1, we denote the normalized symmetric state as, |ξMk ⟩ =

1
N (ξMk )

|P (a0, a1, . . . , aM−1)⟩, (P denotes

the sum of all possible permutation of the elements {a0, a1, . . . , aM−1} for aj ∈ {0, 1, . . . , d − 1} and aj+1 > aj),

{|φj⟩ =

√
d

√
d[M]

d[M]−1
k=0 P⟨j|ξMk ⟩PA|ξ

M
k ⟩C } is a basis of the output state. The LRUO that satisfies Umn|φj+m⟩ = ei

2πnj
d |φj⟩ for

the output state {|φj⟩} is

Umn = UA
mn ⊗ · · · ⊗ UA

mn  
M−1

⊗UC
mn ⊗ · · · ⊗ U c

mn  
M

, (270)

where

UA
mn =

d−1
j=0

e−i 2π jnd |j⟩⟨j + m|, UC
mn =

d−1
j=0

ei
2π jn
d |j⟩⟨j + m|. (271)
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The initial state |ψ⟩X =
d−1

j=0 αj|j⟩ of the sender X is ‘‘encoded’’ to the separated output state |φ⟩X =
d−1

j=0 αj|φj⟩ held by
the (M − 1) ancillas and M receivers.

|ξMk ⟩ =
1

N (ξMk )
|P (a0, a1, . . . , aM−1)⟩ =

1
N (ξMk )


aj


N (ξ ′M−1

k )|aj⟩|ξM−1
k′ ⟩, (272)

where k′
= fM(a0, . . . , aj−1, aj, . . . , aM−1). There is a relationship between index k and k′: k = g(aj, k′), then the total

system takes the form,

|φj⟩ =

√
d

√
d[M]

d[M−1]−1
k′=0

Rk′
j |ξM−1

k′ ⟩A ⊗ |ξMg(j,k′)⟩C , (273)

where we use the notation, Rk′
j =


N (ξM−1

k′
)

N (ξM
g(j,k′)

)
. By tracing out the ancillary states A, we obtain the output state ofM qudits,

ρC = trA(|φ⟩⟨φ|) =

d[M−1]−1
l=0

A⟨ξ
M−1
l |φ⟩⟨φ|ξM−1

l ⟩A

=
d

d[M]

d−1
j,j′=0

d[M−1]−1
k′=0

αjα
∗

j′R
k′
j R

k′
j′ |ξ

M
g(j,k′)⟩C ⟨ξ

M
g(j,k′)|

=
d[1]
d[M]

d[M]−1
k=0

|ξMk ⟩⟨ξMk |


|ψ⟩⟨ψ | ⊗ I⊗(M−1)

d[M]−1
k′=0

|ξMk′ ⟩⟨ξ
M
′k |


=

d[1]
d[M]

sM(|ψ⟩⟨ψ | ⊗ I⊗(M−1))sM = T̂ (|ψ⟩⟨ψ |). (274)

This reduced density matrix of the receivers is consistent with the density matrix for 1 → M d-level optimal clones (Wang
et al., 2011b; Werner, 1998). Let us emphasize that the output of M qudits are consistent with optimal cloning, moreover,
they are spatially separated in different places. The 1 → M telecloning is also related with programming protocol which is
studied in Ishizaka and Hiroshima (2008).

7.3. Economical phase-covariant telecloning

Quantum cloning machines have economic and non-economic cases. Similarly, we also have the economic telecloning
(Wang and Yang, 2009a,b). We know that phase-covariant cloning has been studied in Bruß et al. (2000a); D’Ariano and
Macchiavello (2003); Fan et al. (2003, 2001b). The 1 → M optimal economical phase-covariant cloning for qubits was
proposed in Yu et al. (2007), and the 1 → 2 economic map (non-optimal) for qudits also was studied (Durt et al., 2005).
For special value M = kd + N , the optimal N → M economical cloning for qudits has been introduced (Buscemi et al.,
2005). A protocol for the 1 → M economical phase-covariant telecloning of qubits has been demonstrated in Wang and
Yang (2009a), and the 1 → 2 economical phase cloning of qudits has been derived in Wang and Yang (2009b).

We next see the 1 → M economical phase cloning of qubits, the input state is, |ψ⟩X = cos θ2 |0⟩X + eiφ sin θ
2 |1⟩X :

U|0⟩1|R2···M⟩ = |φ0⟩ = |00 · · · 0⟩M

U|1⟩1|R2···M⟩ = |φ1⟩ =
1

√
M

M
j=1

|0 · · · 1j · · · 0⟩M .

We get the output state which is |ψ⟩
out
M = cos θ2 |φ0⟩X + eiφ sin θ

2 |φ1⟩X , and fidelity F = X ⟨ψ |tr(|ψ⟩out⟨ψ |)|ψ⟩X =

1
M sin4 θ

2 + cos4 θ
2 + sin2 θ

2 cos2 θ
2


2

√
M

+
M−1
M


. Second, the telecloning scheme is that the sender X prepares the quantum

information channel |ξ⟩PC =
1

√
2


|0⟩P |φ0⟩C + |1⟩P |φ1⟩C


. The total state can be expressed as

|Ψ ⟩XPC = |ψ⟩X |ξ⟩PC =
1
2


|Φ0

⟩XP ⊗


cos

θ

2
|φ0⟩ + eiφ sin

θ

2
|φ1⟩


+ |Φ1

⟩XP ⊗


cos

θ

2
|φ0⟩ − eiφ sin

θ

2
|φ1⟩


+ |Φ2

⟩XP ⊗


eiφ sin

θ

2
|φ0⟩ + cos

θ

2
|φ1⟩


+ |Φ3

⟩XP ⊗


eiφ sin

θ

2
|φ0⟩ − cos

θ

2
|φ1⟩


, (275)

where {|Φ0
⟩ = |Φ+

⟩, |Φ1
⟩ = |Φ−

⟩, |Φ2
⟩ = |Ψ+

⟩, |Φ3
⟩ = |Ψ−

⟩} are the Bell basis. The next steps have been reviewed
above in the generalized telecloning.
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For the input state |ψ⟩X =
1

√
d

d−1
j=0 eiθj |j⟩X , the 1 → 2 economical phase-covariant cloning machine was demonstrated

in Durt et al. (2005). It takes the form,
U|0⟩X |R⟩ = |φ0⟩ = |00⟩

U|j⟩X |R⟩ = |φj⟩ =
1

√
2
(|j0⟩ + |0j⟩), (j ≠ 0).

(276)

The fidelity is Fecon = X ⟨ψ |tr(|ψ⟩out⟨ψ |)|ψ⟩X =
1

2d2
[(d − 1)2 + (1 + 2

√
2)(d − 1) + 2]. However, the optimal fidelity

of 1 → 2 phase-covariant (with an ancilla) presented in Fan et al. (2003) is, Fopt =
1
4d (d + 2 +

√
d2 + 4d − 4). When

d = 2, Fecon = Fopt and otherwise d > 2, Fecon < Fopt . It is possible to achieve with optimal fidelity Fopt probabilistically
(Wang and Yang, 2009b). In this scheme, the entangled state used is |ξ⟩PC =

d−1
j=0 xj|j⟩P |φj⟩C , where the coefficients xj, that

are assumed to be real numbers, satisfy the normalization condition
d−1

j=0 x2j = 1. The quantum state of the whole system
is,

|Ψ ⟩XPC = |ψ⟩X ⊗ |ξ⟩PC =
1
d

d−1
m,n=0

|Φmn⟩XP

d−1
j=0

exp

i
2πnj
d


xj+meiθj |φj+m⟩C . (277)

Onlywhen the outcome of the Bell-type jointmeasurement is {m = 0, n} (with probability 1/d), the receivers can obtain the
clones |ψ⟩out =

d−1
j=0 xjeiθj |φj⟩ by using the LRUO U = U0n ⊗ I. The fidelity of this clones is F t

econ =
1
d


1 +

√
2x0

d−1
j=0 xj +d−2

i=1
d−1

j=i+1 xixj

. We set {xj} as

x0 = X(d) =


4(d − 1)

D(D + d − 2)
,

xj = Y (d) =


d2 + (d − 2)D

D(D + d − 2)(d − 1)
, (j ≠ 0), (278)

where D =
√
d2 + 4d − 4. It is not difficult to verify that F t

econ = Fopt for any d. Actually, the output state of this telecloning
scheme is equivalent to the ρC

opt of the optimal phase-covariant cloning after tracing out of the ancilla (Fan et al., 2003). For
d > 2, the von Neumann entropy S(|ξ⟩⟨ξ |) = −X2(d) log2 X2(d) − (d − 1)Y 2(d) log2 Y 2(d) < log2 d, which implies |ξ⟩ is
only partially entangled. Thus, we can conclude that the suitable quantum entanglement in realizing the optimal 1 → 2
cloning of qudits with a certain probability 1/d are special configurations of nonmaximally entangled states rather than the
maximally entangled states.

7.4. Asymmetric telecloning

Quantum telecloning described in the previous section evenly distributes information of the unknown input state to the
distant receivers. However, it may be desirable to transmit information to several different receiverswith different fidelities.
For example, the sender Alice trusts Bob more than Claire hope Bob’s fidelity is larger. These schemes are asymmetric
telecloning. The 1 to 2 optimal asymmetric quantum cloning of qubits was introduced in Bužek et al. (1998), Cerf, (1998;
2000b) and Niu and Griffiths (1998). The 1 to 2 asymmetric cloning machine was generalized to d-dimension case in
Braunstein et al. (2001b), Cerf (2000a), and recently in Wang et al. (2011b).

Here, we briefly review 1 → 2 asymmetric telecloning for qubits (Murao et al., 2000) as an example. The entanglement
state resource is, |ξ⟩ =

1
√
2
(|0⟩P |φ0⟩ + |1⟩P |φ1⟩), where

|φ0⟩ =
1

1 + p2 + q2
(|0⟩|0⟩B|0⟩C + p|1⟩|0⟩B|1⟩C + q|1⟩|1⟩B|0⟩C )

|φ1⟩ =
1

1 + p2 + q2
(|1⟩|1⟩B|1⟩C + p|0⟩|1⟩B|0⟩C + q|0⟩|0⟩B|1⟩C ) (p + q = 1).

(279)

The LRUOs satisfy the conditions, σz ⊗ σz ⊗ σz |φ0(1)⟩ = (−)|φ0(1)⟩, σx ⊗ σx ⊗ σx|φ0(1)⟩ = |φ1(0)⟩. And the final output state
is |ψ⟩out = α0|φ0⟩ + α1|φ1⟩ while the input state being |ψ⟩X = α0|0⟩ + α1|1⟩. The fidelities of Bob and Claire, which satisfy
the trade-off relation,

√
(1 − FB)(1 − FC ) = FB + FC −

3
2 , respectively are

FB =
1 + p2

1 + p2 + q2
FC =

1 + q2

1 + p2 + q2
. (280)
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Next, we show the results of 1 to 2 asymmetric telecloning of qudits. The asymmetric cloning machine is

U|j⟩C1 |00⟩C2A = |φj⟩ =

d−1
m,n=0

βm,n(Vm,n|j⟩C1)⊗ |Φm,−n⟩C2A (281)

=

d−1
m,r=0

bm,r |j + m⟩C1 |j + r⟩C2 |j + m + r⟩A, (282)

where Vm,n =
d−1

j=0 e2π jn/d|j + m⟩⟨j| are generalized Pauli matrices and bm,r =
1

√
d

d−1
n=0 e

−i2πnr/dβm,n. We have a
mathematical equation,

d−1
m,n=0

βm,n|Φm,n⟩RC1 |Φm,−n⟩C2A =

d−1
m,n=0

γm,n|Φm,n⟩RC2 |Φm,−n⟩C1A (283)

where
d−1

m,n=0 |βm,n|
2

= 1, γm,n =
1
d

d−1
x,y=0 e

i2π(nx−my)/dβx,y. Then we project this equation on |j⟩R and get |φj⟩ =d−1
m,n=0 γm,n(Vm,n|j⟩C2) ⊗ |Φm,−n⟩C1A. The input state |ψ⟩X =

d−1
j=0 αj|j⟩ is copied into the output states |ψ⟩out =d−1

j=0 αj|φj⟩C1C2A. This output states are described by the reduced density matrices, respectively,

ρC1 = trC2A(|ψ⟩out⟨ψ |) =

d−1
m,n=0

|βm,n|
2Vm,n|ψ⟩X ⟨ψ |V Ď

m,n, (284)

ρC2 = trC1A(|ψ⟩out⟨ψ |) =

d−1
m,n=0

|γm,n|
2Vm,n|ψ⟩X ⟨ψ |V Ď

m,n. (285)

In order to generate the clones that are characterized by the optimal fidelities which are independent of the input state, the
following condition should be satisfied (Cerf, 2000a; Cerf et al., 2002b),

b0,0 =
1

√
d
[ν + (d − 1)µ], bm,0 =

√
dµ,

b0,r =
1

√
d
(ν − µ), bm,r = 0, (m ≠ 0, r ≠ 0). (286)

And we get the fidelities of two clones

FC1 =
1 + (d − 1)p2

1 + (d − 1)(p2 + q2)
, FC2 =

1 + (d − 1)q2

1 + (d − 1)(p2 + q2)
, (287)

where p =
ν−µ

ν+(d−1)µ , q = 1 − p. When p = q = 1/2, the fidelities are in agreement with F =
N(d−1+M)+M

M(d+N) (N = 1,M = 2)
obtained byWerner (Werner, 1998). The telecloning scheme requires the quantumentanglement, shared by the port, ancilla,
and the receivers C1, C2, is given as |ξ⟩ =

1
√
d

d−1
j=0 |j⟩P |φj⟩C1C2A. After the sender performs a Bell-type joint measurement

on the input and port particles, and gets the result m, n, the ancilla and the receivers C1, C2 perform the LRUO U local
m,n =

j1,j2,j3
ei2πn(j1+j2−j3)/d|j1⟩⟨j1 + m|C1 ⊗ |j2⟩⟨j2 + m|C2 ⊗ |j3⟩⟨j3 + m|A and gets the output state |ψ⟩out =

d−1
j=0 αj|φj⟩C1C2A.

7.5. General telecloning

In the general case (Zhang et al., 2013a), the sender hold the N identical input states |ϕ⟩
⊗N

= (


j xj|j⟩)
⊗N at the same

location X , so we have the state, |ψ⟩X = |ϕ⟩
⊗N . One may find that this state belongs to the symmetric subspace,

|ψ⟩X =

N
−→n


√
N!


j

α
nj
j
nj!


|
−→n ⟩, (288)

where |
−→n ⟩ are the basis of the symmetric subspace H⊗N

+ in the standard representation, each element of vector −→n
corresponding to the number of state |i⟩ as shown explicitly in (63). For convenience, we introduce the notation y−→n ≡

(
√
N!


j
α
nj
j√
nj!
) and the initial state in Eq. (288) can be rewritten as,

|ψ⟩X =

N
−→n

y−→n |
−→n ⟩. (289)



H. Fan et al. / Physics Reports 544 (2014) 241–322 297

The sender would like to distribute these states to spatially separated M receivers, M ≥ N . Following the teleportation
procedure, the sender performs a joint measurement on input particles X1, X2, . . . , XN and port particles P1, P2, . . . , PN
which are acting as ancillary states, then announce the outcome to the M − N ancillas and M receivers via classical
communication. Next, the ancillas and receivers get the optimal clones after applying the specific Local Recovery Unitary
Operator (LRUO). In order to achieve this aim, instead of using joint Bell-type measurement, the sender performs a more
general positive operator-valued measure (POVM) defined by |χ(

−→x )⟩ on the system,

|χ(
−→x )⟩ = [I⊗N

X ⊗ U(−→x )⊗N
P ]

1
√
d[N]

N
−→n

|
−→n ⟩X |

−→n ⟩P . (290)

We remark that the state |χ(
−→x )⟩ in the projection corresponds to a bipartite maximally entangled state 1

√
d[N]

N
−→n |

−→n ⟩X

|
−→n ⟩P with tensor product of N identical unitary operators on one party. This POVM can be confirmed by the following
property,

d−→x F−→x =


d−→x λ(−→x )|χ(−→x )⟩⟨χ(−→x )| = SNX ⊗ SNP , (291)

where SN ⊗SN is the identity in the spaceH⊗N
+ ⊗H⊗N

+ , U(−→x ) is an element of Lie group SU(d), and the vector−→x consisting
(d2 − 1) parameters which can determine the unitary operator. Next we show that the latter equation can be satisfied.
According to the theorem of Weyl Reciprocity (Ma, 2007), the unitary transformation U⊗N and permutation Pα can be
exchanged. If Y[λ]

µ is a standard Young operator corresponding to the standard Young tableau with N boxes, the subspace
Y[λ]
µ H⊗N will be invariant under transformation U⊗N . Considering that the symmetric projection SN is equal to the standard

Young operator 1
N!

Y[N], we have

U(−→x )⊗NSN = SNU(−→x )⊗N , (292)

U(−→x )⊗N
|
−→n1 ⟩ =


−→n2

D−→n2 ,
−→n1 (

−→x )|−→n2 ⟩, (293)

where D(−→x ) is a representation of Lie group SU(d). A group theorem states that an irreducible representation of group
SU(d) will be induced when U(−→x )⊗N operates on invariant subspace Y[λ]

µ H⊗N when Y[λ]
µ is a standard Young operator,

see (Ma, 2007). Thus D(−→x ) is an irreducible representation of group SU(d). Then according to Schur’s lemmas and the
orthogonality relations (Ma, 2007), we obtain,

1
d[N]


d−→x λ(−→x )D−→n1 ,

−→n2 (
−→x )D∗

−→n3 ,
−→n4
(
−→x ) = δ−→n1 ,

−→n3 δ
−→n2 ,

−→n4 . (294)

This formula ensures that the integral of the projectors F−→x is equal to the identity operator in the space H⊗N
+ ⊗ H⊗N

+ which
should be satisfied for a POVM. In special case d = 2, because we know the analytical expression of the unitary matrix
U(−→x ) and its irreducible representation D(−→x ), an appropriate finite POVM can be constructed, then the integral reduces to
summation. The importance to construct finite POVM is that its explicit form is necessary for experimental implementation.

The total system can be expressed as

|ψ⟩X |ξ⟩PAC =
1

d[N]


−→x

λ(
−→x )|χ(−→x )⟩XP [UĎ(

−→x )⊗(M−N)
A ⊗ UT (

−→x )⊗M
C ]

Ď


d[N]

d[M]

 N
−→n

y−→n P⟨
−→n |

 M
−→m

|
−→m ⟩PA|

−→m ⟩C


=

1
d[N]


−→x

λ(
−→x )|χ(−→x )⟩XP [U local(

−→x )]Ď|ψc⟩AC . (295)

The LRUO is U local(
−→x ) = UĎ(

−→x )⊗(M−N)
A ⊗ UT (

−→x )⊗M
C . As we expect, the sender distributes the universal cloning state

|ψc⟩AC to spatially separatedM receivers assisted by (M − N) ancillas. The scheme of the telecloning can be represented in
Fig. 8.

The asymmetric quantum telecloning for multiqubit states with various figures of merit are investigated by Chen and
Chen (Chen and Chen, 2007a). The reverse processing of telecloning is the remote state concentration. Roughly speaking,
the final state of the information concentration is the initial state of the telecloning. It is shown that in the concentration
processing, the bound entangled state can be used as a resource (Murao and Vedral, 2001). The standard entangled
state possesses similar capability in the quantum information concentration (Zhang et al., 2013a). This remote quantum
information concentration is also studied in Wang et al. (2011a).

Telecloning is a combination of teleportation and quantum cloning, its reverse process is remote quantum information
concentration. The quantum information distribution and concentration are expected to be the fundamental functions of
quantum networks. Those functions can be potentially used for clocks synchronization with quantum advantage (Zhang
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Fig. 8. Scheme of telecloning. The sender who may possess several ports share a maximally entangled state with several receivers who are spatially
separated, and possibly assisted with ancillary states. The sender (Cloud) performs a POVM and announces the measurement result, the receiver can
recover their states locally, see (Zhang et al., 2013a).

et al., 2013b). We can expect that the network quantum computation will be an important subject for further explorations.
Some experimental and implementation schemes of the telecloning are reported as in the following. The experimental
realization of telecloning is performed by partial teleportation scheme (Zhao et al., 2005). A proposal of distance cloning
is in Filip (2004b). The entanglement resource of up to six qubits of Dicke states is created experimentally (Prevedel et al.,
2009). The experimental implementation of telecloning of optical coherent states is demonstrated in Koike et al. (2006).
The experimental telecloning of phase-conjugate inputs is presented in Zhang et al. (2008). Telecloning of entanglement is
presented in Ghiu and Karlsson (2005), the telecloning ofW state is studied in Yan et al. (2009). A scheme to implement an
economical phase-covariant quantum telecloning is separate cavities is proposed in Fang et al. (2012b). Implementation of
telecloning of economic phase-covariant about bipartite entangled state is studied in Meng and Zhu (2009). The continuous
variable telecloning with bright entangled beams is studied in Olivares and Paris (2008). The controlled telecloning and
teleflipping for one pure qubit is studied in Zhan et al. (2009).

8. Quantum cloning for continuous variable systems

This section is devoted to the issue of quantum cloning machine for continuous variable (CV) systems. The available re-
views of this topic can be found in Cerf and Grangier (2007); Scarani et al. (2005). The photonic state of optical system is
usually described by CV. Most schemes and protocols of quantum computation and quantum information can be realized
and demonstrated by photonic state of CV, it may possesses unique advantage other than other systems. The reviews of CV
quantum information can be found in Braunstein and van Loock (2005); Wang et al. (2007); Weedbrook et al. (2012), see
spin squeezing inMa et al. (2011). An example of continuous systems is simply to consider the position andmomentum of a
particle, or the two quadratures of a quantized electromagnetic field. Instead of universal cloning, we only study the case of
N → M Gaussian cloning for coherent states, whose precise definition will be given in the context below. We shall first get
the fidelity bound forN → M Gaussian cloning (Cerf and Iblisdir, 2000), and then give an explicit implementation using a lin-
ear amplifier and beam splitters (Braunstein et al., 2001a). Note that the same procedure is also suitable if the input states are
squeezed states, provided little change of parameters of the devices ismade (Braunstein et al., 2001a; Cerf and Iblisdir, 2000).

8.1. Optimal bounds for Gaussian cloners of coherent states

We deal with a quantum system described in terms of two canonically conjugated operators x̂ and p̂, which respectively
has a continuous spectra. Since x̂ and p̂ are conjugated, they cannot both be copied perfectly, so we hope to find a cloning
machine which makes an approximate cloning and obtain an ‘‘optimal’’ result. Corresponding to universal cloning, we here
focus on cloning transformations which take only coherent states as input. That is, the input states of the cloning machine
form a set S, which can be parametrized as,

S =


|α⟩ : α =

1
√
2
(x + ip), x, p ∈ R


, (296)

where ⟨α|x̂|α⟩ = x and ⟨α|p̂|α⟩ = p. Moreoverwe shall only considerN → M symmetric Gaussian cloners (SGCs)which can
be defined as a linear completely positive map: CN,M : H⊗N

→ H⊗M , where H stands for an infinite-dimensional Hilbert
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space. So after the transformation we shall get ρM = CN,M(|α⟩⟨α|
⊗N). To mean Gaussian, the reduced state of a single clone

needs to satisfy:

ρ1 = TrM−1(ρM)

=
1

πσ 2
N,M


d2βe−|β|

2/σ 2
N,MD(β)|α⟩⟨α|DĎ(β), (297)

where the integral is performed over all values of β = (x + ip)/
√
2 in the complex plane, note that we have set h̄ = 1, and

D(β) = exp(β âĎ −β∗â) is a displacement operator which shifts a state of x in position and p in momentum, â and âĎ denote
annihilation and creation operators respectively. As a result, after cloning for each copy an extra noise σ 2

x = σ 2
p = σ 2

N,M
on the conjugate variables x and p are added. It is readily checked that the cloning fidelity fN,M = ⟨α|ρ1|α⟩ is the same
for any coherent input state |α⟩, provided σN,M remains invariant, which means, our cloner is symmetric. Through simple
computation one finds,

fN,M = ⟨α|ρ1|α⟩ =
1

1 + σ 2
N,M

. (298)

Now we shall make the proposition that the lower bound of σN,M is

σ̄ 2
N,M =

M − N
MN

, (299)

which implies the optimal fidelity for N → M cloning machine is

fN,M =
1

1 + σ̄ 2
N,M

=
MN

MN + M − N
. (300)

Next we will prove (299). As first step we shall come up with a lemma.

Lemma 2. Cascading a N → M cloner with an M → L cloner cannot be better than the optimal N → L cloner. In our case, two
cascading N → M and M → L SGCs result in a single N → L SGC whose variance is simply the sum of variances of the two
cascading SGCs. Hence we have

σ̄ 2
N,L ≤ σ 2

N,M + σ 2
M,L, (301)

where σ̄ 2
N,M stands for the low variance bound of N → L cloner.

The proof for Lemma 1 can be found in Cerf and Iblisdir (2000). We will use Lemma 1 to reach (299). From (301), setting
L → ∞ we get

σ̄ 2
N,∞ ≤ σ 2

N,M + σ̄ 2
M,∞. (302)

Then we can use quantum estimation theory to analyze σ̄ 2
N,∞, which is the variance of an optimal joint measurement of x̂

and p̂ on N replicas of a system. We have (Holevo, 1982),

gxσ 2
x (1)+ gpσ 2

p (1) ≥ gx∆x̂2 + gp∆p̂2 +
√
gxgp, (303)

for all values of the constants gx, gp > 0, where σ 2
x (1) and σ

2
p (1) denote the variance of themeasured values of x̂ and p̂, while

∆x̂2 and∆p̂2 denote the intrinsic variance of observables x̂ and p̂, respectively. For each value of gx and gp, we have a specific
positive-operator-valuedmeasure (POVM)which achieves the bound. Also, as in classical statistics, we have (Holevo, 1982),

σ 2
x (N) =

σ 2
x (1)
N

, σ 2
p (N) =

σ 2
p (1)

N
, (304)

where σ 2
x N or σ 2

p N is the measured variance of x̂ or p̂ if we perform the measurement on N independent and identical
systems. In the context of coherent states,∆x̂2 = ∆p̂2 = 1/2, if we further require σ 2

x (N) = σ 2
p (N), the tight bound of (303)

is reached for gx = gp. Then it yields from (303)

σ̄ 2
N,∞ = 1/N. (305)

Combine (301) and (305), we have completed our proof.

8.2. Implementation of optimal Gaussian QCM with a linear amplifier and beam splitters

In this section, we shall give the explicit transformation for the optimal Gaussian N → M cloning of coherent states,
and show that the transformation can be implemented through the common devices used in quantum optics experiments:
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a phase-insensitive linear amplifier and a network of beam splitters (Braunstein et al., 2001a). Thus we can prove that the
optimal bounds of fidelity derived in the previous section can actually be achieved. Note also other implementations may
be possible as well, for example, a scheme using a circuit of CNOT gates is proposed to be an implementation for the 1 → 2
Gaussian cloning (Cerf et al., 2000).

Assume the state to be cloned is |α⟩, we denote the initial input state of the cloningmachine as |Ψ ⟩ = |α⟩
⊗N

⊗|0⟩⊗M−N
⊗

|0⟩z , where except theN inputmodes to be cloned,wehaveM−N blankmodes and an ancillarymode z. The blankmodes and
the ancilla are prepared initially in the vacuum state |0⟩. Let {xk, pk} denote the pair of quadrature operators associated with
eachmode k involved in the cloning transformation, where k = 0, . . . ,M−1 (for simplicity, we sometimes omit the hats for
operators when the context is unambiguous). As usual, for cloning we mean a quantum operation U : H⊗M−1

→ H⊗M−1

performed on the initial state |Ψ ⟩, and the output state becomes |Ψ ′′
⟩ = U|Ψ ⟩.

For simplicity of analysis and calculation which shall be shown below, we work in the Heisenberg picture, then U can be
described by a canonical transformation acting on the operators {xk, pk}:

x′′

k = UĎxkU, p′′

k = UĎpkU, (306)

while the state |Ψ ⟩ is left invariant. We will now impose several requirements for the transformation U which establish
some expected properties of the state after cloning:

1. The expected values of x and k for theM output modes be:

⟨x′′

k ⟩ = ⟨α|x0|α⟩, ⟨p′′

k ⟩ = ⟨α|p0|α⟩, (307)

which means the state of the clones is centered on the original coherent state.
2. Note that for a coherent state, we have σ 2

x = σ 2
p = ∆x2vac =

1
2 , and also by a rotation in the phase space, we get the

operator v = cx+ dp, (where c and d are complex numbers satisfying |c|2 + |d|2 = 1), the error variance of which is the
same:

σ 2
v = σ 2

x = σ 2
p = ∆x2vac =

1
2
. (308)

We then require that the invariance property under rotation is preserved by the transformation U , which yields

σ 2
v′′k

= σ 2
x′′k

= σ 2
p′′
k

=


1 +

2
N

−
2
M


∆x2vac, (309)

where v′′

k = cx′′

k + dp′′

k .
3. U is unitary, which in the Heisenberg picture is equivalent to demand that the commutation relations are preserved

through the transformation:

[x′′

j , x
′′

k ] = [p′′

j , p
′′

k ] = 0, [x′′

j , p
′′

k ] = iδjk, (310)

for j, k = 0, . . . ,M − 1 and for the ancilla.

Based on the above requirements we shall then give the explicit implementation of the cloning machine.

8.3. Optimal 1 → 2 Gaussian QCM

We first consider the simple case of duplication (N = 1,M = 2). An explicit transformation can be found:

x′′

0 = x0 +
x1
√
2

+
xz
√
2
, p′′

0 = p0 +
p1
√
2

−
pz
√
2
,

x′′

1 = x0 −
x1
√
2

+
xz
√
2
, p′′

1 = p0 −
p1
√
2

−
pz
√
2
,

x′

z = x0 +
√
2xz, p′

z = −p0 +
√
2pz, (311)

for which one can check that all the three requirements are satisfied.
Next we proceed to see how to implement the above duplicator in practice. First interpret (310) as a sequence of two

canonical transformations:

a′

0 =
√
2a0 + aĎz , a′

z = aĎ0 +
√
2az

a′′

0 =
1

√
2
(a′

0 + a1), a′′

1 =
1

√
2
(a′

0 − a1), (312)

where ak = (xk + ipk)/
√
2 and aĎk = (xk − ipk)/

√
2 denote the annihilation and creation operators for mode k. We then

can immediately come up with a practical scheme which has two steps to have the desired transformation realized. Step 1
is a phase-insensitive amplifier whose gain G is equal to 2, while step 2 is a phase-free 50:50 beam splitter (see Fig. 9). To
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Fig. 9. Implementation of the optimal Gaussian 1 → 2 QCM for light modes. LA stands for linear amplifier and BS represents a balanced beam splitter, see
(Braunstein et al., 2001a).

see the cloner is optimal, we note from (Caves, 1982), for an amplifier of gain G, each quadrature’s excess noise variance is
bounded by

σ 2
LA ≥ (G − 1)/2. (313)

Since we have chosen G to be 2, it yields σ 2
LA = 1/2, which proves the optimality of the cloning transformation.

8.4. Optimal Gaussian N → M QCM

Now we continue to study the case of N → M Gaussian cloning, this time we shall again use linear amplifier to achieve
the transformation. Due to the relation of extra variance and gain from (313), we need to make G as low as possible in order
to reach the optimal limit of σ 2

N,M . The cloning procedure is as follows: (i) concentrate theN inputmodes to one singlemode,
which is then amplified. (ii) distribute the concentratedmode symmetrically among theM outputmodes. Obviously an easy
method to realize the processes is through discrete Fourier transform (DFT), with which we can write out the detailed steps
of the cloning procedure.

Step 1: concentration of the N input modes by a DFT:

a′

k =
1

√
N

N−1
l=0

exp(ikl2π/N)al, (314)

where k = 0, . . . ,N−1. After the concentration, the energy of theN inputmodes is put together on one singlemode, which
we shall rename as a0, while every other mode becomes a vacuum state. To see this more clearly, we note that the energy of
one mode is Ek = h̄ω(⟨aĎkak⟩+

1
2 ), k = 0, . . . ,N − 1. Since the input state is |α⟩

⊗N , ⟨aĎkal⟩ = |α|
2 for all k and l, and the total

energy is E =
N−1

k=0 Ek = Nh̄ω(|α|
2
+

1
2 ). On the other hand, after the DFT process, all modes except one become vacuum

states. From Eq. (314), for any k ≠ 0, we have

⟨a
′Ď
k a

′

k⟩ =
1
N

N−1
l=0

N−1
m=0

exp

i
k2π
N
(m − l)


⟨aĎl am⟩

= |α|
2 1
N

N−1
l=0

N−1
m=0

exp

i
k2π
N
(m − l)


= 0. (315)

So the new mode k ≠ 0 is a vacuum state. On the other hand for k = 0, we have

⟨a′Ď
0 a

′

0⟩ =
1
N

N−1
l=0

N−1
m=0

⟨aĎl am⟩ = N|α|
2. (316)

Now we see energy is concentrated in the new mode 0.
Step 2: take the mode a0 together with the ancilla as the input of a linear amplifier of gain G = M/N , which results,

a′

0 =


M
N

a0 +


M
N

− 1aĎz ,

a′

z =


M
N

− 1aĎ0 +


M
N

az . (317)
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Fig. 10. Implementation of the optimal Gaussian N → M QCM for light modes. LA represents linear amplifier, DFT stands for discrete Fourier transform,
see (Braunstein et al., 2001a).

Step 3: distribute energy symmetrically onto the M outputs by performing a DFT on a′

0 and the M − 1 vacuum modes
produced in step 1:

a′′

k =
1

√
M

M−1
l=0

exp(ikl2π/M)a′

l, (318)

It is readily checked that the procedure can meet our three requirements. Moreover if we choose σ 2
LA = [M/N − 1]/2, the

optimality is then confirmed.
Like the case of 1 → 2 cloning, we shall also use a network of beam splitters to construct the required DFT. It is

shown that any discrete unitary operator can be experimentally realized by a sequence of beam splitters and phase shifters
(Reck et al., 1994). An explicit construction is given in Braunstein et al. (2001a) as shown in Fig. 10.

8.5. Other developments and related topics

Similarities and differences exist between cloning in discrete space and CV space. Similar as in discrete space case, if
we know partial information of the input state in CV system, the fidelity can also be improved (Alexanian, 2006). Without
analog in discrete case, the quantum cloning with phase-conjugate input modes is studied in Cerf and Iblisdir (2001b).

One can expect that many proposals in discrete case can be extended to CV case. Next, we list those results in areas of
QKD, CV quantum cloning and implementation schemes in the following.

• In relation with QKD, the application of CV cloning machine in key distribution is studied in Cerf et al. (2001). By some
figure of merit, the optimal cloning of coherent states with non-Gaussian setting may be better than a Gaussian setting
(Cerf et al., 2005). This may pose a question about whether the security of a QKD can be challenged or not in a more
general condition. However, CV cryptography (Grosshans and Grangier, 2002) is shown to be still secure under non-
Gaussian attack (Grosshans and Cerf, 2004). The asymmetry CV cloning used for security analysis of cryptography is also
discussed in Cerf et al. (2002c). The review of CV cloning and QKD can be found in Cerf and Grangier (2007).

• TheCVuniversalNOTgate is studied in Cerf and Iblisdir (2001a). The optimal cloning ofmixedGaussian states is studied in
Guta and Matsumoto (2006). The superbroadcasting of CV mixed states is studied in D’Ariano et al. (2006). The quantum
cloning limits for finite distributions of coherent states are studied in Cochrane et al. (2004), and also in Demkowicz-
Dobrzanski et al. (2004). A proposal to test quantum limits of a Gaussian-distributed set of coherent state related with
cloning is presented in Namiki (2011). The cloning of CV entangled state is studied in Weedbrook et al. (2008).

• The implementation of CV quantum cloning via various schemes is proposed in Braunstein et al. (2001a); D’Ariano et al.
(2001); Fiurášek (2001b). The multicopy Gaussian states is studied in Fiurasek and Cerf (2007). The Gaussian cloning of
coherent light states into an atomic quantum memory is presented in Fiurášek et al. (2004).

Experimentally, implementation of Gaussian cloning of coherent states with fidelity of about 65% by only linear optics
is shown in Andersen et al. (2005), the results are further analyzed in Olivares et al. (2006). Experimental realization
of CV cloning with phase-conjugate inputs is shown in Sabuncu et al. (2007) and also in Chen and Zhang (2007). The
experimental realization of both CV teleportation and cloning is reported in Zhang et al. (2005).

As one of themost basic protocols of quantum information processing, the CV teleportation is studied in Braunstein et al.
(2000). The criteria of CV cloning and teleportation are studied in Grosshans and Grangier (2001). We remark again that the
reviews of CV quantum information can be found in Braunstein and van Loock (2005); Wang et al. (2007); Weedbrook et al.
(2012).

9. Sequential universal quantum cloning

In past years, theoretical research on quantum cloning machines have progressed greatly. At the same time, various
cloning schemes have been realized experimentally, by using polarized photons (Irvine et al., 2004; Pelliccia et al., 2003;
Lamas-Linares et al., 2002; Ricci et al., 2004) or nuclear spins in NMR (Cummins et al., 2002; Du et al., 2005). However,
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these experiments are only restricted to 1 → 2 or 1 → 3 cloning machines, leaving the general case of N → M cloning
unsolved. The difficulty of realizing N → M cloning mainly arises in preparing multipartite entangled states, since it is very
difficult to perform a global unitary operation on large-dimensional systems to create multipartite entangled states. While
on the other hand, using the technique of sequential cloning, one may be able to divide the big global unitary operation
into small ones, each of which is only concerned with a small quantum system and as a result makes it possible to get
the desired entangled state. Several quantum cloning procedures for multipartite cloning were proposed, but they are not
in the sequential method Fan et al. (2003); Simon et al. (2000). In 2007, based on the work of Vidal (Vidal et al., 2003),
Delgado et al. proposed a scheme of a sequential 1 → M cloning machine (Delgado et al., 2007). Since the procedure is
sequential, it significantly reduces the difficulty of its realization. Later, a scheme ofmore generalN → M sequential cloning
is presented (Dang and Fan, 2008). The case of N → M sequential cloning of qudits is also proposed briefly, yet the details
are not presented. The essential idea of sequential method is to express the desired state in the form of matrix product state
(MPS), and according to results in Schon et al. (2005), any MPS can be sequentially generated. On the other hand, it is also
pointed out that sequential unitary decompositions are not always successful for genuine entangling operations (Lamata
et al., 2008). Here in this section, we will present in detail how the procedure of 1 → M and N → M sequential cloning can
work.

9.1. 1 → M sequential UQCM

According to the method of Delgado et al. (2007), we first need an ancilla system of dimension D. Let HA denotes the
D-dimensional Hilbert space of the ancilla system, andHB the 2-dimensional Hilbert space of one qubit. In every step of the
sequential cloning, we perform a quantum evolutional operator V on the product space of the ancilla and a single qubit. Here
we suppose that each qubit is initially state |0⟩ which will not appear in the following equations. V then can be represented
by an isometric transformation: V : HA → HA ⊗ HB , in which V =


i,α,β V

i
α,β |α, i⟩⟨β|. Let V i

=


α,β V
i
α,β |α⟩⟨β|, then

V i is a D × D matrix and satisfies the isometry condition


i V
iĎV i

= I . Let the initial state of the ancilla be |φI⟩ ∈ HA. We
make the ancilla to interact with the qubits once a time and sequentially, after the unitary operation, we would not recover
the ancilla state. So when n operations have been done, the final output state of the ancilla and all the qubits take the form,
|Ψ ⟩ = V [n] . . . V [2]V [1]

|φI⟩, where indices in squared brackets represent the steps of sequential generation. Nowwe need to
decouple the aniclla from the multi-entangled qubits, and then the n-qubit state shall be left:

|ψ⟩ =


i1,i2,...,in

⟨φF |V [n]in . . . V [1]i1 |φI⟩|i1 . . . in⟩, (319)

where φF represents the final state of the ancilla. For 2-dimensional system {|0⟩, |1⟩}, the cloning transformation of the
optimal 1 → M cloning machine is (Gisin and Massar, 1997):

|0⟩ ⊗ |R⟩ → |Ψ
(0)
M ⟩ =

M−1
j=0

βj|(M − j)0, j1⟩ ⊗ |(M − j − 1)1, j0⟩R, (320)

|1⟩ ⊗ |R⟩ → |Ψ
(1)
M ⟩ =

M−1
j=0

βM−j−1|(M − j − 1)0, (j + 1)1⟩ ⊗ |(M − j − 1)1, j0⟩R, (321)

in which βj =
√
2(M − j)/M(M + 1), |(M − j−1)1, j0⟩R is the final state of the cloningmachine, and |(M − j)0, j1⟩ denotes

the normalized completely symmetricM-qubit state with (M − j) qubits in |0⟩ and j qubits in |1⟩. In order to clone a general
state |φ⟩, it is necessary to know how to sequentially generate the states |Ψ

(0)
M ⟩ and |Ψ

(1)
M ⟩, as a result of which we need to

express these two states in the MPS form:

|Ψ
(0)
M ⟩ =


i1,...,in

⟨φ
(0)
F |V [n]in

0 . . . V [1]i1
0 |0⟩D|i1 . . . in⟩, (322)

|Ψ
(1)
M ⟩ =


i1,...,in

⟨φ
(1)
F |V [n]in

1 . . . V [1]i1
1 |0⟩D|i1 . . . in⟩. (323)

Nowwe aim to get the explicit expression of the matrices V [k]ik
0 and V [k]ik

1 . A way to do so is by using Schmidt decomposition
(SD) (Vidal et al., 2003), see textbook (Nielsen and Chuang, 2000). Consider an arbitrary state |Ψ ⟩ in Hilbert space H⊗n

2 , the
SD of |Ψ ⟩ according to the bipartition A : B is

|Ψ ⟩ =


α

λα|Φ
[A]

α ⟩|φ[B]
α ⟩, (324)

where |Φ[A]
α ⟩(|Φ[B]

α ⟩) is an eigenvector of the reduced density matrix ρ[A](ρ[B])with eigenvalue |λα|
2

≥ 0, and the Schmidt
coefficient λα satisfies ⟨Φ[A]

α |Ψ ⟩ = λα|Φ
[B]
α ⟩.
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With the help of SD, we proceed the following protocol:

1. Compute the SD of |Ψ ⟩ according to the bipartite 1 : n − 1 splitting of the n-qubit system, which is

|Ψ ⟩ =


α1

λ[1]
α1

|Φ[1]
α1

⟩|Φ[2...n]
α1

⟩ (325)

=


i1,α1

Γ [1]i1
α1

λ[1]
α1

|i1⟩|Φ[2...n]
α1

⟩, (326)

where in the second line we have expressed the Schmidt vector |Φ[1]
α1

⟩ in the computational basis {|0⟩, |1⟩}: |Φ[1]
α1

⟩ =
i1
Γ

[1]i1
α1 |i1⟩.

2. Expand |Φ[2...n]
α1

⟩ in local basis for qubit 2,

|Φ[2...n]
α1

⟩ =


i2

|i2⟩|τ
[3...n]
α1 i2

⟩. (327)

3. Express |τ
[3...n]
α1i2

⟩ by at most χ Schmidt vectors |Φ[3...n]
α2

⟩ (the eigenvectors of ρ[3...n]), where α2 ranges from 1 to χ and
χ = maxA χA, here χA denotes the rank of the reduced density matrix ρA for a particular partition A : B of the n-qubit
state:

|τ
[3...n]
α1 i2

⟩ =


α2

Γ [2]i2
α1α2

λ[2]
α2

|Φ[3...n]
α2

⟩, (328)

where λ[2]
α2

’s are the corresponding Schmidt coefficients.
4. Substitute (327) and (328) into (325), we get

|Ψ ⟩ =


i1,α1,i2,α2

Γ [1]i1
α1

λ[1]
α1
Γ [2]i2
α1α2

λ[2]
α2

|i1i2⟩|Φ[3...n]
α2

⟩. (329)

Now it is easy to see if we repeat the steps 2–4, we get the expansion of |Ψ ⟩ in the computational basis:

|Ψ ⟩ =


i1

. . .

in

ci1...in |i1⟩ . . . |in⟩. (330)

where the coefficients ci1...in are

ci1...in =


α1,...,αn−1

Γ [1]i1
α1

λ[1]
α1
Γ [2]i2
α1α2

λ[2]
α2
. . .Γ [n]in

αn−1
. (331)

Through comparing Eqs. (319) and (331), we are able to construct V [k]ik
0 and V [k]ik

1 explicitly. The detailed work is omitted
here since in next section about themore generalN → M sequential cloning case, each step of getting thematrix is provided.

When the input state of the cloningmachine is an arbitrary state |ψ⟩ = x0|0⟩+x1|1⟩ (normalization condition is satisfied:
|x0|2 + |x1|2 = 1), according to the linearity principle of quantum mechanics, the state after cloning transformation is
x0|Ψ

(0)
M ⟩+ x1|Ψ

(1)
M ⟩, which can also be sequentially generated. First, view the arbitrary state |ψ⟩ and the ancilla’s initial state

|0⟩D as a unified state: |φI⟩ = |ψ⟩ ⊗ |0⟩D. Then use the qubit k, (k = 1, 2, . . . , n), sequentially to interact with the ancilla
according to the 2D-dimensional isometric operators V [k]ik = |0⟩⟨0|⊗V [k]ik

0 +|1⟩⟨1|⊗V [k]ik
1 . After all qubits have interacted

with the ancilla, perform a generalized Hadamard transformation to the ancilla

|0⟩|φ(0)F ⟩ →
1

√
2
[|0⟩|φ(0)F ⟩ + |1⟩|φ(1)F ⟩] (332)

|1⟩|φ(1)F ⟩ →
1

√
2
[|0⟩|φ(0)F ⟩ − |1⟩|φ(1)F ⟩]. (333)

Now measure the ancilla with the basis {|0⟩|φ(0)F ⟩, |1⟩|φ(1)F ⟩}, either result occurs with probability 1/2. When the result is
|0⟩|φ(0)F ⟩, we get the desired state x0|Ψ

(0)
M ⟩ + x1|Ψ

(1)
M ⟩; while if the result is |1⟩|φ(1)F ⟩, we need to perform a π-phase gate

upon each qubit, and the desired state will be obtained.
To realized the above 1 → M cloning scheme, an ancilla system of dimension 2M is needed, while if we take a global

unitary operation to accomplish the cloning, the dimension of the unitary operation will increase exponentially withM . So
we see sequential cloning is much easier to realize experimentally.
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9.2. N → M optimal sequential UQCM

In this section, we will discuss the more general case N → M optimal sequential UQCM. An arbitrary qubit is written
|Ψ ⟩ = x0|0⟩ + x1|1⟩ (|x0|2 + |y0|2 = 1), then N identical |Ψ ⟩ can be expressed as

|Ψ ⟩
⊗N

=

N
m=0

xN−m
0 xm1


Cm
N |(N − m)0,m1⟩, (334)

where Cm
N =

N!

m!(N−m)! , and |(N−m)0,m1⟩ denotes the normalized completely symmetricN-qubit state with (N−m) qubits
in state |0⟩ andm qubits in state |1⟩.

It is well known that the optimal UQCM transformation for completely symmetric states (Gisin and Massar, 1997) is

|(N − m)0,m1⟩ ⊗ |R⟩ → |Ψ
(m)
M ⟩ =

M−N
j=0

βmj|(M − m − j)0, (m + j)1⟩ ⊗ |Rj⟩, (335)

where βmj =


CM−N−j
M−m−jC

j
m+j/C

N+1
M+1, Rj denotes the final states of the cloningmachine, and for different j, |Rj⟩’s are orthogonal

to each other. Here we can choose |Rj⟩ = |(M − N − j)1, j0⟩R. Since we have found the cloning transformation of any state
in the form |(N − m)0,m1⟩, according to the linearity principle of quantum mechanics, the transformation for N arbitrary
state |Ψ ⟩ is

|Ψ ⟩
⊗N

⊗ |R⟩ → |ΨM⟩ =

N
m=0

xN−m
0 xm1


Cm
N |Ψ

(m)
M ⟩, (336)

here |ΨM⟩ is the final state of all the qubits and the cloning machine we hope to obtain, like the 1 → N sequential UQCM
case, we first need to show how |Ψ

(m)
M ⟩ can be sequentially generated. Hence it is necessary to know theMPS form of |Ψ (m)

M ⟩:

|Ψ
(m)
M ⟩ =


i1...i2M−N

⟨φF |V [2M−N]i2M−N . . . V [1]i1 |φI⟩|i1 . . . i2M−N⟩, (337)

where V [n]in(1 ≤ n ≤ 2M − N) is a D × D dimensional matrix, and satisfies the isometry condition:


in(V
[n]in)ĎV [n]in = I .

Now we shall follow the idea of SD, and give detailed elaboration on how to get the explicit form of V [n]in .

1. Case n = 1.
Compute the SD of |Ψ (m)

M ⟩ according to partition 1:2 . . . (2M − N):Ψ (m)
M


=

M−N
j=0

βmj |(M − m − j) 0, (m + j) 1⟩ ⊗ |Rj⟩

=


α1

λ[1]
α1

|φ[1]
α1

⟩ ⊗ |φ[2...(2M−N)]
α1

⟩

=


α1,i1

Γ
[1]i1
α1 λ[1]

α1
|i1⟩ ⊗ |φ[2...(2M−N)]

α1
⟩

= |0⟩ ⊗ λ
[1]
1

φ[2...(2M−N)]
1


+ |1⟩ ⊗ λ

[1]
2

φ[2...(2M−N)]
2


, (338)

where through comparing the first and last lines, we getφ[2...(2M−N)]
1


=

M−m−1
k=−m

βmk


Cm+k
M−1

Cm+k
M

|(M − m − k − 1) 0, (m + k) 1⟩ ⊗ |Rk⟩/λ
[1]
1 ,

φ[2...(2M−N)]
2


=

M−m−1
k=−m

βm(k+1)


Cm+k
M−1

Cm+k+1
M

|(M − m − k − 1) 0, (m + k) 1⟩ ⊗ |Rk+1⟩/λ
[1]
2 .

Compare the last two lines, we also have

Γ [1]0
α1

= δα1,1, Γ [1]1
α1

= δα1,2, α1 = 1, 2.

Now use the condition of normalization, Schmidt coefficients could be calculated,

λ
[1]
1 =

M−m−1
k=−m

β2
mk

Cm+k
M−1

Cm+k
M

, λ
[1]
2 =

M−m−1
k=−m

β2
m(k+1)

Cm+k
M−1

Cm+k+1
M

.
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Then we have

V [1]i1
α1

= Γ [1]i1
α1

λ[1]α1 .

The explicit form of V [1]i1 is given in the Appendix, so is other V [i]in .
Next, we will not present the detailed calculations for other cases since the method is almost the same, but only list

the results.
2. For 1 < n ≤ M − 1: We calculate the SD of |Ψ (m)

M ⟩ according to partitions. The results are:

λ
[n]
j+1 =

C j
n

M−m−n
k=−m

β2
m(j+k)

Cm+k
M−n

Cm+j+k
M

, λ
[n−1]
j+1 =

C j
n−1

M−m−n+1
k=−m

β2
m(j+k)

Cm+k
M−n+1

Cm+j+k
M

.

Γ
[n]0
(j+1)αn = δ(j+1)αn


C j
n−1

λ
[n−1]
j+1


C j
n

, Γ
[n]1
(j+1)αn = δ(j+2)αn


C j
n−1

λ
[n−1]
j+1


C j+1
n

.

And for this case, the summarized form is V [n]in
αnαn−1

= Γ [n]in
αn−1αn

λ[n]αn .
3. Case n = M: We have,

λ
[M]
j+1 = βm(j−m), λ

[M−1]
j+1 =

C j
M−1

−m+1
k=−m

β2
m(j+k)

Cm+k
1

Cm+j+k
M

.

And also,

Γ
[M]0
(j+1)αM

= δαM (j+1)


C j
M−1

λ
[M−1]
j+1


C j
M

,

Γ
[M]1
(j+1)αM

= δαM (j+2)


C j
M−1

λ
[M−1]
j+1


C j+1
M

.

Similarly, for this case V [M]iM
αMαM−1 = Γ

[M]iM
αM−1αMλ

[M]
αM

.
4. CaseM + l (1 ≤ l ≤ M − N): We have,

λ
[M+l]
j+1 =

C j−m
M−N−l

l
k=0

β2
m(j+k−m)

Ck
l

C j+k−m
M−N

.

λ
[M+l−1]
j+1 =

C j−m
M−N−l+1

l−1
k=0

β2
m(j+k−m)

Ck
l−1

C j+k−m
M−N

,

Γ
[M+l]0
(j+1)αM+l

= δαM+lj

 C j−m−1
M−N−l

C j−m
M−N−l+1

/λ[M+l]
αM+l

,

Γ
[M+l]1
(j+1)αM+l

= δαM+l(j+1)

 C j−m
M−N−l

C j−m
M−N−l+1

/λ[M+l]
αM+l

.

Then we have V [M+l]iM+l
αM+lαM+l−1 = Γ

[M+l]iM+l
αM+l−1αM+lλ

[M+l]
αM+l .

Up till now, we have calculated out the explicit form of every V [k]ik , and since V [k]ik depends on m, we denote it as V [k]ik
(m)

here after. Through computation, we can get the smallest dimension needed for the isometric operator V [k]ik
(m) ,

D =


M − N/2 + 1 if N is even;
M − (N − 1)/2 + 1 if N is odd. (339)

So we see D increases linearly withM , which shall significantly ease the difficulty of sequential cloning.
Based on the above computation, we have known that the state |Ψ

(m)
M ⟩ can be expressed in the MPS form, so the N-qubit

pure state |(N −m)0,m1⟩ can be sequentially transformed to |Ψ
(m)
M ⟩. Now in order to sequentially clone the N-qubit |Ψ ⟩

⊗N

toM qubits, the scheme is as follows Dang and Fan (2008).
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(1) encode the N-qubit |Ψ ⟩
⊗N in the ancilla, which makes the initial state of the united ancilla

|φ′

I⟩ =

N
m=0

xN−m
0 xm1


Cm
N |(N − m)0,m1⟩ ⊗ |0⟩D. (340)

(2) Build the operators

V [k]ik =

N
m=0

(


Cm
N )

1
2M−N (|0⟩⟨0|)⊗N−m(|1⟩⟨1|)⊗m

⊗ V [n]in
(m) . (341)

(3) Let all the qubits interact sequentially with the united ancilla according to the operator V [k]ik , we get the final state of
the whole system

|Ψout⟩ =


i1...i2M−N

V [2M−N]i2M−N . . . V [1]i1 |ϕ′

i ⟩ ⊗ |i1 . . . i2M−N⟩

=

N
m=0

xN−m
0 xm1


Cm
N |0⟩⊗N−m

|1⟩⊗m
⊗ |ϕ

(m)
F ⟩ ⊗ |Ψ

(m)
M ⟩,

where |ϕ
(m)
F ⟩ is the final state of the ancilla when the input state is |(N − m)0,m1⟩.

(4) Perform a generalized Hadamard gate on the ancilla (quantum Fourier transformation)

|0⟩⊗N−m
|1⟩⊗m

⊗ |ϕ
(m)
F ⟩ →

1
√
N + 1

N
m′=0

e
i2πmm′

N+1 |0⟩⊗N−m′

|1⟩⊗m′

⊗ |ϕ
(m′)
F ⟩, (342)

after which the final state becomes

|Ψ ′

out⟩ =
1

√
N + 1

N
m′=0

|0⟩⊗N−m′

|1⟩⊗m′

⊗ |ϕ
(m′)
F ⟩ ⊗ |Ψ ′

M⟩, (343)

where

|Ψ ′

M⟩ =

N
m=0

e
i2πmm′

N+1 xN−m
0 xm1


Cm
N |Ψ

(m)
M ⟩. (344)

(5) Make measurement on the whole ancilla with the basis {|0⟩⊗N−m′

|1⟩⊗m′

⊗ |ϕ
(m′)
F ⟩}

N
m′=0. When the result is m′

= 0,
the desired state |ΨM⟩ =

N
m=0 x

N−m
0 xm1


Cm
N |Ψ

(m)
M ⟩ is directly obtained. If the measuredm′

≠ 0, then we need to act a local
phase gate US on every qubit. Through computation, a proper phase gate is

US = |0⟩⟨0| + eiθ |1⟩⟨1|, (345)

where θ = −
2πm′

N+1 . With the effect of the phase gate, the output state becomes

|Ψ ′′

M⟩ = ei(M−N)θ
|ΨM⟩. (346)

Since the phase ei(M−N)θ will not affect, the output state is what wewant. Now it can be seenwe have realized the sequential
N → M UQCM. When N = 1, all the results coincide with the 1 → M case in last section.

Recently, the sequential cloning concerning about the real-life experimental condition is investigated in Saberi and
Mardoukhi (2012).

9.3. Sequential UQCM in d dimensions

Wenow further proceed to amore general casewhere qubit is extended to qudit. In the space of ddimensions, an arbitrary
quantum pure state can be expressed as

|Ψ ⟩ =

d−1
i=0

xi|i⟩,
d−1
i=0

|xi|2 = 1. (347)

Then N identical such qudits will be expanded in symmetric space as (Werner, 1998)

|Ψ ⟩
⊗N

=

N
m=0


N!

m1! . . .md!
xm1
0 . . . xmd

d−1|m⟩, (348)
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Fig. 11. Quantum circuit implementing quantum cloning machines. This quantum circuit can realize both universal cloning machine and phase-covariant
quantum cloning machine by adjusting parameters in the single qubit rotation gates. This circuit is the same as the one in Bužek et al. (1997a).

where |m⟩ denotes the symmetric state, whose form is

|m⟩ = |m10,m21, . . . ,md(d − 1)⟩, (349)

which means the symmetric state |m⟩ has mi qudits in the computational base |i⟩(i = 1, . . . , d), and the sum of qubits in
each base satisfies

d
i=1 mi = N .

Take the symmetric state |m⟩ as the input state of the optimal d-level UQCM according to Fan et al.’s scheme (Fan et al.,
2001a), the correspondingM-qudit output state will be

|Ψ
(m)
M ⟩ =

M−N
j=0

βmj |m + j⟩ ⊗ |Rj⟩, (350)

where the vector j = (j1, j2, . . . , jd) satisfies
d

i=1 ji = M − N , |Rj⟩ = |j⟩R denotes the state of the cloning machine, and

βmj =

d
i=1 C

mi
mi+ji

/CM−N
M+d−1. The following steps are similar to the 2-level case presented previously. We still need to find

the MPS form of the state |Ψ
(m)
M ⟩, and the method is through SD as well. Express |Ψ

(m)
M ⟩ in the computational basis

|Ψ
(m)
M ⟩ =


i1...i2M−N

⟨ϕ
(m)
F |V [2M−N]i2M−N . . . V [1]i1 |0⟩D ⊗ |i1 . . . i2M−N⟩ (351)

Through computation, V [k]ik can be obtained (Dang and Fan, 2008). The detailed process is just a direct extension of the
2-level case and shall be omitted here, see the Appendix for the details. Besides, we also know that the necessary dimension

of the ancilla is Dd = C
M−⌊

N+1
2 ⌋

M−⌊
N+1
2 ⌋+d−1

, where the symbol ⌊X⌋ denotes the floor function. So we may observe that d ≥ 2Dd is

far smaller than dM , that simplification shows the advantage of sequential cloning of qudits.

10. Implementation of quantum cloning machines in physical systems

In general, the cloning machines can be realized by the corresponding quantum circuits constituted by single qubit
rotation gates and CNOT gates just like other quantum computations. This is guaranteed by the universal quantum
computation (Barenco et al., 1995) which can be realized by a complete set of universal gates.

10.1. A unified quantum cloning circuit

It is interesting that the UQCM and the phase-covariant QCM can be realized by a unified quantum cloning circuit by
adjusting angles in the single qubit rotation gates, as shown in Fig. 11 first presented by Bužek et al. (1997a). Let us consider
the definition of single qubit rotation gate (33) with a fixed phase parameter which can be omitted, it can be written in
matrix form as,

R̂(ϑ) =


cosϑ sinϑ

− sinϑ cosϑ


. (352)

The form of CNOT gate is in (34). Here we use subindices in a CNOT gate, CNOTjk, to specify that the controlled qubit is j and
the target qubit is k. Following the copying scheme in Bužek et al. (1997a), the cloning procession is divided into two unitary
transformations,

|Ψ (in)
a1 |0⟩a2 |0⟩a3 → |Ψ ⟩

(in)
a1 |Ψ ⟩

(prep)
a1a2 → |Ψ ⟩

(out)
a1a2a3 . (353)
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The preparation state is constructed as follows,

|Ψ ⟩
(prep)
a2a3 = R̂2(ϑ3)CNOT32R̂3(ϑ2)CNOT23R̂2(ϑ1)|0⟩a2 |0⟩a3 . (354)

The second step is as,

|Ψ ⟩
(out)
a1a2a2 = CNOTa3a1CNOTa2a1CNOTa1a3CNOTa1a2 |ψ⟩

(in)
a1 |ψ⟩

(prep)
a2a3 . (355)

We may find that two copies are in a2, a3 qubits. For UQCM, the angles in the single qubit rotations are chosen as,

ϑ1 = ϑ3 =
π

8
, ϑ2 = − arcsin


1
2

−

√
2
3

1/2

. (356)

This scheme is flexible and can be adjusted for phase-covariant quantum cloning.We only need to choose different angles
for the single qubit rotations, and those angles are shown to be as follows (Fan et al., 2001b),

ϑ1 = ϑ3 = arcsin

1
2

−
1

2
√
3

 1
2

, ϑ2 = − arcsin


1
2

−

√
3
4

 1
2

. (357)

To be explicit, we may find that the preparation state takes the form,

|Ψ ⟩
(perp)
a2a3 =

1
√
2
|00⟩a2a3 +

1
2
(|01⟩a2a3 + |10⟩a2a3). (358)

The second step for phase-covariant quantum cloning is the same as the that of the UQCM. So this cloning circuit is general
and can be applied for both universal cloning and phase-covariant cloning.

10.2. A simple scheme of realization of UQCM and Valence-Bond Solid state

We already know that the universal cloning machine can be realized by a symmetric projection. This fact can let us
find a simple scheme for the implementation of the universal cloning machine. The simplest universal cloning machine
can be obtained by a symmetric projection on the input qubit and one part of a maximally entangled state. This symmetric
projection can be naturally realized by bosonic operators in the Fock space representation. Suppose the input state is aĎH , the
available maximally entangled state is aĎHa

Ď
H + aĎVa

Ď
V , here H, V can be horizontal and vertical polarizations of a photon, or

any other degrees of freedom of the bosonic operator. We also suppose that those operators are acting on the vacuum state,
then we have,

aĎH

aĎHa

Ď
H + aĎVa

Ď
V


=


2
3
(aĎH)

2

√
2!

aĎH +


1
3
(aĎHa

Ď
V )a

Ď
V


√
3. (359)

Nowweconsider that the last bosonic operators are acting as ancillary qubits, in Fock space representation, (a
Ď
H )

2
√
2

corresponds

to two photons in horizontal polarization, while aĎHa
Ď
V is a symmetric state with one horizontal photon and one vertical

photon. By a whole normalization factor
√
3, the above formula then takes the following form, with initial state |H⟩,

|H⟩ →


2
3
|2H⟩|H⟩a +


1
3
|H, V ⟩|V ⟩a. (360)

Similarly for a vertical photon, we have

|V ⟩ →


2
3
|2V ⟩|V ⟩a +


1
3
|H, V ⟩|H⟩a. (361)

It is now clear that those two transformations constitute exactly a UQCM. This fact is noticed by Simon et al. Actually it also
provides a natural realization of the UQCM by photon stimulated emission. Based on the experiment of the preparation of
maximally entangled state, the UQCM can be realized by the above scheme which we will present later.

For no-cloning theorem, a frequentlymisunderstanding pointmaybe that, it seems that ‘‘laser’’ itself can provide a perfect
cloning machine, one photon can be cloned perfectly to have many completely same photons. This seems contradict with
no-cloning theorem. The point is that we can for sure clone a photon to have may copies. However, the no-cloning theorem
states that if we clone horizontal and vertical photons perfectly, we cannot clone perfectly the photon superposition state
of horizontal and vertical. Thus ‘‘laser’’ does not conflict with no-cloning theorem.

When a maximally entangled state is available, it seems that a UQCM can be realized. In condensed matter physics, the
Valence-Bond Solid state is constructed by a series of singlet states, see for example (Fan et al., 2004),

|VBS⟩ =

N
i=0


aĎi b

Ď
i+1 − aĎi+1b

Ď
i


|vacuum⟩, (362)
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where sites 0 and N +1 are two ends. We remark that the sites in the bulk will be restricted to the symmetric subspace also
by the reason of Fock space representation as shown schematically in the following:

By the same consideration as presented above, since one singlet state is a maximally entangled state, the UQCM can be
realized if the input state is put in site 0, (αaĎ0 + βbĎ0)


aĎ0b

Ď
1 − aĎ1b

Ď
0


. Further one may notice we do not need to restrict

just a singlet state where only two sites are involved, a whole one-dimensional Valence-Bond Solid state can be dealt as a
maximally entangled state so that a UQCM can be realized like the following:

(αaĎ0 + βbĎ0)|VBS⟩. (363)

The state of input αaĎ0 + βbĎ0 is like the open boundary operator. One feature of this universal cloning machine may be that
the ancillary states are at one end of this 1D state, the two copies are located on another end. This system is like a Majorana
fermion quantum wire proposed by Kitaev (2001) where the encoded qubit is topologically protected. It is also pointed out
that the cloning machine can be realized by networks of spin chains (De Chiara et al., 2004).

10.3. UQCM realized by photon stimulated emission and the experiment

With the results in last section, one may realize that a maximally entanglement source may provide a mechanism for
quantum cloning. The corresponding fidelity is optimal. It seems that photon stimulated emission possesses such a property
and can give a realization of the UQCM. This is first proposed in Kempe et al. (2000), Simon et al. (2000) and realized
experimentally (Fasel et al., 2002; Lamas-Linares et al., 2002). In this scheme, certain types of three-level atoms can be used
to optimality clone qubit that is encoded as an arbitrary superposition of excitations in the photonic modes corresponding
to the atomic transitions. Next, we shall first review briefly the qubit case followed by a general d-dimensional result.

For qubit case (Kempe et al., 2000; Simon et al., 2000), we consider the inverted medium that consists of an ensemble
of Λ atoms with three energy levels. These three levels correspond to two degenerate ground states |g1⟩ and |g2⟩ and an
excited level |e⟩. The ground states are coupled to the excited state by two modes of the electromagnetic field a1 and a2,
respectively. The Hamiltonian of this system takes the form,

H = γ


a1

N
k=1

|ek⟩⟨gk
1 | + a2

N
k=1

|ek⟩⟨gk
2 |


+ H.c. (364)

We then introduce the operator as brcĎ ≡
N

k=1 |ek⟩⟨gk
r |, r = 1, 2, where cĎ is a creation operator of ‘‘e-type’’ excitation, br

is a annihilation operator of gr ground states, r = 1, 2. Now the Hamiltonian (364) becomes as,

H = γ (a1b1 + a2b2)cĎ + H.c. (365)

Now we find that the source of maximally entangled states is available. The input state can be considered as the form
(αaĎ1 + βaĎ2)|0, 0⟩ = α|1, 0⟩ + β|0, 1⟩. The number of copies in this cloning system is restricted by the number of atoms in
excited states ⊗

N
k=1 |ek⟩ which are represented as (cĎ)N/

√
N!. We may consider that initially there are i + j qubits in aĎ1 and

aĎ2 which corresponds to a completely symmetric state with i, j states in two different levels of qubits,

|Ψin, (i, j)⟩ =
(aĎ1)

i(aĎ2)
j(cĎ)N

√
i!j!N!

|0⟩

= |ia1 , ja2⟩|0b1 , 0b2⟩|Nc⟩

≡ |i, j⟩a|0, 0⟩b|N⟩c . (366)

With the Hamiltonian (365), the time evolution of the state starting from the initial state (366) becomes as follows,

|Ψ (t), (i, j)⟩ = e−iHt
|Ψin, (i, j)⟩

=


p

(−iHt)p/p!|Ψin, (i, j)⟩ =

N
l=0

fl(t)|Fl, (i, j)⟩, (367)

where |Ψin, (i, j)⟩ = |F0, (i, j)⟩, l is the additional photons emitted corresponding to additional copies, thus there are
altogether i + j + l copies in the output which is expressed as |Fl, (i, j)⟩. In this process, the states with different copies are
actually superposed together. The amplitude parameter in the superposed state corresponds to the probability of finding l
additional copies which is |fl(t)|2.
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Fig. 12. Schematic of experimental universal quantum cloning, see Ref. (Lamas-Linares et al., 2002).

To show that this process is exactly the realization of the optimal UQCM, we can show that the corresponding cloning
transformation with l additional copes can be calculated as,

|i, j⟩a|0, 0⟩b|N⟩c → |Fl, (i, j)⟩ =

l
k=0


l!(i + j + 1)!
(i + j + l + 1)!


(i + l − k)!(j + k)!

i!j!k!(l − k)!

|i + l − k, j + k⟩a|l − k, k⟩b|N − l⟩c . (368)

This is indeed the UQCM. In addition, this provides an alternative method to find the optimal cloning transformations.
Experimentally, Lamas-Linares et al. successfully performed the universal quantum cloning by using the Hamiltonian

(365) shown above (Lamas-Linares et al., 2002). The operators aĎ, bĎ are creation operators of photons in the spatial modes
a, bmarked in Fig. 12 corresponding to two different directions of emission after passing the non-linear crystal (BBO 2mm).
Photons of mode aĎ with subscript 1, 2 refer to vertical and horizontal polarization, respectively. In the state analyzer part
of the experimental setup, vertical and horizontal photons can be analyzed by polarizing beam splitter in front of photon
detectors D2 and D3.

In experiment, a laser produces light pulses of 120 fs duration (Fs pulse shown in Fig. 12). By beam splitter, a tiny part
of each pulse is split off and attenuated below the single-photon level resulting in probabilistically the input photon. The
polarization of the input photon can be adjusted in the state preparation part corresponding to arbitrary input pure qubit.
The major part of the pulse is frequency doubled (shown as 2ω in Fig. 12) and used to pump the non-linear crystal (BBO
2 mm) where photon pairs entangled in polarization are created, as shown in Hamiltonian (365). The input photon and
the a photons with vertical and horizontal polarizations created are adjusted so that they can overlap perfectly and are
indistinguishable for quantum cloning. Photon of mode b severs as a trigger indicating whether the entangled state in
polarization by parametric down-conversion has created or not. For time evolution e−iH t with small values of γ t for initial
state aĎ1|0⟩, the first order term corresponds to three photon state (aĎ1b

Ď
1 + aĎ2b

Ď
2)a

Ď
1|0⟩. Here we remark that the entangled

state in vertical and horizontal polarization usually takes the form aĎVb
Ď
H − aĎHb

Ď
V which is equivalent to what we write here.

The output state has the form, (aĎ1)
2 for bĎ1 and aĎ1a

Ď
2 for bĎ2 corresponding to two terms in the universal quantum cloning

transformation. By this method the information of the input photon polarization, a qubit, is quantum cloned by universal
cloning on the down-converted photon. This process of universal cloning is exactly what we have reviewed as symmetric
projection of identical input states and one half themaximally entangled states.Wemay expect that, if maximally entangled
states are available, the universal quantum cloning is possible if symmetric projection can be realized.

10.4. Higher dimension UQCM realized by photon stimulated emission

The higher dimensional case can be similarly studied (Fan et al., 2002). Now the atoms have one excited state |e⟩ and d
(d ≥ 2) ground states |gn⟩, n = 1, 2, . . . , d, and each coupled to a different photons an corresponding to modes of qudit.
The Hamiltonian can also be written as a generalized form,

Hd = γ (a1b1 + · · · + adbd)+ H.c. (369)
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The initial states which are symmetric states are,

|Ψin, j⃗⟩ =

d
i=1

(aĎi )
ji

√
ji!
(cĎ)N
√
N!

|0⟩ ≡ |⃗j⟩a|0⃗⟩b|N⟩c, (370)

where j⃗ = (j1, j2, . . . , jd). One can find that the time evolution of states for qudits is the same as that of qubits (367). So the
probability to obtain additional l copies is |fl(t)|2. We use the notation |F0, j⃗⟩ ≡ |Ψin, j⃗⟩,


i ji = M , and the output of cloning

with l additional copies can be obtained as,

|⃗j⟩a|0⃗⟩b|N⟩c → |Fl, j⃗⟩ =

l
ki


(M + d − 1)!l!
(M + l + d − 1)!

d
i=1


(ki + ji)!
ki!ji!

|⃗j + k⃗⟩a|k⃗⟩b|N − l⟩c, (371)

where summation
l

ki
runs for all variables with constraint,

d
i ki = l. We thus realize the optimal UQCM for qudits.

Explicitly, the action of Hamiltonian on the symmetric states takes the following form,

Hd|Fl, j⃗⟩ = γ (

(l + 1)(N − l)(M + l + d)|Fl+1, j⃗⟩ +


l(N − l + 1)(M + l + d − 1)|Fl−1, j⃗⟩, l ≤ l < N,

Hd|F0, j⃗⟩ = γ

N(M + d)|F1, j⃗⟩,

Hd|FN , j⃗⟩ = γ

N(M + N + d − 1)|FN−1, j⃗⟩. (372)

To end this subsection, we present our familiar results of UQCM but in this photonic system. An arbitrary qudit takes the
form, |Ψ ⟩ =

d
i=1 xia

Ď
i |0⃗⟩, with

d
i=1 |xi|2 = 1. By expansion, it corresponds to state,

|Ψ ⟩
⊗M

=


d

i=1

xia
Ď
i

⊗M

|0⃗⟩

= M!

M
ji

d
i=1

xjii
√
ji!
(aĎi )

ji
√
ji!

|0⃗⟩. (373)

With the help of cloning transformation (371), the output of cloning is,

|Ψ ⟩
⊗M

→ |Ψ ⟩
out

= M!

M
ji

l
ki


(M + d − 1)!l!
(L + d − 1)!

×

d
i=1

xjii
ji!


(ki + ji)!

ki!
|⃗j + k⃗⟩a|k⃗⟩b, (374)

As we already know, this is the UQCM of qudits.
Quantum cloning itself is reversible since it is realized by unitary transformation. This does not necessarily mean that

the cloning realized by photon stimulated emission can be inverted. However, it is proposed that this inverting process can
succeed (Raeisi et al., 2012).

10.5. Experimental implementation of phase-covariant quantum cloning by nitrogen–vacancy defect center in diamond

The economic phase-covariant quantum cloning involves only three states of two-qubit system. Experimentally, we
can encode those three states by three energy levels in a specified physical system. The experimental implementation of
phase-covariant quantum cloning by this scheme is realized in solid state system (Pan et al., 2011). This solid system is the
nitrogen–vacancy (NV) defect center in diamond. The structure of NV center in diamond is that a carbon atom is replaced
by a nitrogen atom and additionally a vacancy is located in a nearby lattice site. The NV center is negative charged and can
provide three states of the electronic spin one. Those three states correspond to zero magnetic moment (ms = 0) with
a 2.87 GHz zero field splitting, two magnetic sub-levels induced by external magnetic field corresponding to ms = ±1.
The experimental samples of diamond can be bulk or nanodiamond. The electronic spin in NV center of diamond can be
individually addressed by using confocal microscopy so that we can control it exactly, however, ensemble of NV centers can
also bewell controlled. The NV center can be initialized to statems = 0 polarization by a continuous 532 nm laser excitation.

The superposed states of ms = 0 with ms = ±1 are prepared by resonating microwaves depending on the duration
time determined by their corresponding Rabi oscillations. The microwave radiation is sent out by a copper wire of 20 µm
diameter placed with a distance of 20 µm from the NV center. The Rabi oscillations corresponding to different microwave
frequencies show that the prepared states are superposed states in quantum mechanics. The resonating frequencies of the
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controlling microwaves are determined by the electronic-spin-resonating (ESR) spectrum of the NV center obtained by
frequency continuously changing. The readout of the electronic state is by Rabi oscillation, the measured value depends
on the intensity of the florescence which corresponding to the amplitude of state ms = 0 in the superposed state. The
intensity of florescence is measured by single photon counting module connected with a multifunction data acquisition
device. The main advantage of the NV center in diamond is its long coherence time which is long enough for spin electronic
spin manipulation for various tasks in quantum information processing.

One key point in precisely control the electron spin state is that it does not interact with environmental spin bathmainly
constituted by nearby nuclear spins. The fact is that when the electron spin is in state with zero magnetic moment,ms = 0,
it does not interact with the nuclear spin. If the electron spin is in either of the ms = ±1 states, it is under the influence of
the nearby nuclear spin. We may, on the one hand, use this coherent coupling for quantum information purposes, such as
to generate entangled state or for quantum memory. On the other hand, it causes decoherence of the quantum state of the
electron spin in the NV center. The interaction between the electron spin and a nearby nuclear spin in the NV center can be
clearly shown by hyperfine structure in the ESR spectrum.

The general spin Hamiltonian of the NV center consisting of an electron spin, S, coupled with nearby nuclear spins, Ik, is
given as,

Hspin = Hzf + HeZeeman + Hhf + Hq + HnZeeman, (375)

where the terms in spin Hamiltonian describe: the electron spin zero field splitting, HZF = SD̄S, the electron Zeeman
interaction, HeZeeman = βeB⃗0ḡeS, hyperfine interactions between the electron spin and nuclear spins Hhf =


k SĀkIk, the

quadrupole interactions for nuclei with I > 1/2, Hq =


Ik>1 IkP̄kIk, and the nuclear Zeeman interactions, HnZeeman =

−βn


k gn,kB⃗0Ik, also ge and gn are the g factors for the electron and nuclei respectively, βe, βg are Bohr magnetons for
electron and nucleus, Ā and P̄ are coupling tensors of hyperfine and quadrupole, and B⃗0 is the applied magnetic field.

In implementation of economic phase-covariant quantum cloning, we use four equatorial qubits equivalent to BB84
states. However, according to result of minimal input set, it is also possible to check just three equatorial qubits (Jing et al.,
2012). Since only three orthogonal states are involved in the economic phase-covariant cloning, the scheme is to use three
physical statesms = 0,ms = ±1 to represent logic states of qubits. In the experimental scheme, the encode scheme is that:
|10⟩ → ms = 0, |00⟩ and |01⟩ correspond toms = ±1 respectively.

The implementation of phase cloning is in two steps. The first step is the initial state preparationwhich includes the input
state preparation and cloning machine initialization. The experimental realization of this step is to prepare the logic qubits
1

√
2
(|0⟩ + eiφ |1⟩)|0⟩, which is to prepare physically a superposed state of two involved levels. It is realized by initializing

the NV center, applying a π/2 pulse microwave. The second step of the phase cloning is to realize the quantum cloning
transformation. According to the optimal transformation |00⟩ → |00⟩, |10⟩ →

1
√
2
(|10⟩+|01⟩), we can realize it by applying

another π/2 pulse microwave. So now the phase quantum cloning is realized experimentally. To readout the result, we can
use the combination of two Rabi oscillations to find the exact value of the output state. Experimentally, it is shown that the
experimental results are very close with theoretical expectations. In average, the experimental fidelity is about 85.2%which
is very close to theoretical optimal bound 1/2 +

√
1/8 ≈ 85.4% and is clearly better than the universal quantum cloning

(Pan et al., 2011).
To run all values of the phase parameter, the active controlling of the phase of the input state should be performed in

experiment. This can also be realized experimentally by using two independently microwave sources. This experiment is
performed recently by using the nanodiamond (Chang et al., 2013). The advantage by using nanodiamond instead of the bulk
sample is its further integration property. Additionally, due to the sub-wavelength size of the nanodiamond, the fluorescence
collection efficiency can increase dramatically which provides a high quality signal. The experimental results are presented
in Fig. 13. We can find that the advantage of the phase cloning machine than the universal cloning machine can also be
demonstrated in this experiment by using the state tomography for readout.

10.6. Experimental developments

Quantum cloning process have been realized by various schemes experimentally as we already reviewed in the previous
sections. Here let us present some experiments in the following. By quantum circuit method as shown in Fig. 11, the uni-
versal cloning is realized by nuclear magnetic resonance (NMR) (Cummins et al., 2002). The phase-covariant cloning is also
realized in NMR system with input states ranging from the equator to the polar possessing an arbitrary phase parameter
(Du et al., 2005). The UQCM is realized experimentally by single photon with different degrees of freedoms (Huang et al.,
2001), stimulated emission with optical fiber amplifier (Fasel et al., 2002). Also in optical system, the UQCM and the NOT
gate are realized (Martini et al., 2004). Closely related with optical cloning, the experimental noiseless amplifier for quan-
tum light states is performed (Zavatta et al., 2011). The UQCM realization in cavity QED is proposed in Milman et al. (2003).
Experimental of various cloning machines in one set is performed recently in optics system (Lemr et al., 2012).

Quantum cloning machine can be used for metrology. It is proposed theoretically and shown experimentally with an
all-fiber experiment at telecommunications wavelengths that the optimal cloning machine can be used as a radiometer to
measure the amount of radiated power (Sanguinetti et al., 2010). The electro-optic quantum memory for light by atoms is
demonstrated experimentally and compared with the limit of no-cloning limit (Hetet et al., 2008).
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Fig. 13. Experimental results of phase-covariant quantum cloning in NV center of diamond at room temperature. The output states in experiment are
readout by state tomography. The fidelities for different input states are presented and are shown to be better than the bound 5/6 of the universal cloning
machine. The average fidelity is very close to theoretical expectation. This figure is presented in Chang et al. (2013).

11. Concluding remarks

The research of quantum cloning and the QIP are continuously developing. In preparing this review, some new results
may emerge which may not be summarized in this review. However, we still try to include some new results in the revision
process of this review. When this review was first posted in arXiv, a lot of colleagues informed us some related literatures
which might be missed in the previous versions. We would like to thank those responses. At the same time, their feedbacks
let us realize that such a review is indeed necessary. We are then encouraged to finish this review and the revision. The
anonymous referee also provided a lot of valuable suggestions for us to improve our presentation.
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Appendix

For sequential quantumcloningmachine of qudits, somedetailed results are presented here.We shall provide the explicit
form of matrix V [n]in for different kinds of sequential UQCM.
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A.1. N → M sequential UQCM of qubits.

1. When n = 1: The upper left corner of V [1]i1 is

V [1]0
=


λ[1]1 0
0 λ[1]2


, V [1]1

=


0 λ[1]1
λ[1]2 0


,

while for α1 ≥ 3, set V [1]i1
xy =

1
√
2
δxy.

2. Case 1 < n ≤ M − N + m.
For 1 ≤ αn, αn−1 ≤ n,

V [n]0
αnαn−1

= δαnαn−1


M−m−n
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n

C
m+αn−1−1+k
M

M−m−n+1
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n+1

C
m+αn−1−1+k
M

, (A.376)

otherwise V [n]0
αnαn−1

= δαnαn−1
1

√
2
.

For 2 ≤ αn ≤ (n + 1), 1 ≤ αn−1 ≤ n,

V [n]1
αnαn−1

= δαn(αn−1+1)


M−m−n
k=−m

β2
m(αn−1+k)

Cm+k
M−n

C
m+αn−1+k
M

M−m−n+1
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n+1

C
m+αn−1−1+k
M

, (A.377)

for αn = 1, αn−1 = n + 1, V [n]1
αnαn−1

=
1

√
2
, otherwise V [n]1

αnαn−1
= δαnαn−1

1
√
2
.

3. CaseM − N + m < n ≤ M − m.
For 1 ≤ αn, αn−1 ≤ (M − N + m + 1),

V [n]0
αnαn−1

= δαnαn−1


M−m−n
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n

C
m+αn−1−1+k
M

M−m−n+1
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n+1

C
m+αn−1−1+k
M

. (A.378)

For 2 ≤ αn ≤ (M − N + m + 1), 1 ≤ αn−1 ≤ (M − N + m),

V [n]1
αnαn−1

= δαn(αn−1+1)


M−m−n
k=−m

β2
m(αn−1+k)

Cm+k
M−n

C
m+αn−1+k
M

M−m−n+1
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n+1

C
m+αn−1−1+k
M

, (A.379)

otherwise, V [n]1
αnαn−1

= 0.
4. CaseM − m < n ≤ M − 1.

(1) For (m + n + 1 − M) ≤ αn, αn−1 ≤ (M − N + m + 1),

V [n]0
αnαn−1

= δαnαn−1


M−m−n
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n

C
m+αn−1−1+k
M

M−m−n+1
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n+1

C
m+αn−1−1+k
M

. (A.380)

For αn = m + n − M , 1 ≤ αn−1 ≤ (M − N + m + 1), V [n]0
αMαM−1

= 0. Otherwise, V [n]0
αnαn−1

= δαnαn−1
1

√
2
.

(2) For (m + n + 1 − M) ≤ αn ≤ (M − N + m + 1), (m + n − M) ≤ αn−1 ≤ (M − N + m),

V [n]1
αnαn−1

= δαn(αn−1+1)


M−m−n
k=−m

β2
m(αn−1+k)

Cm+k
M−n

C
m+αn−1+k
M

M−m−n+1
k=−m

β2
m(αn−1−1+k)

Cm+k
M−n+1

C
m+αn−1−1+k
M

. (A.381)

For αn = m + n − M , 1 ≤ αn−1 ≤ (M − N + m + 1), V [n]1
αMαM−1

= 0. Otherwise, V [n]1
αnαn−1

= δαnαn−1
1

√
2
.
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5. Case n = M .
(1) For (m + 1) ≤ αM , αM−1 ≤ (M − N + m + 1),

V [M]0
αMαM−1

= δαMαM−1

 β2
m(αM−1−1−m)

/CαM−1−1
M

β2
m(αM−1−1−m)

/CαM−1−1
M + β2

m(αM−1−m)
/CαM−1

M

. (A.382)

For αM = m, 1 ≤ αM−1 ≤ (M − N + m + 1), V [M]0
αMαM−1

= 0. Otherwise, V [M]0
αMαM−1

= δαMαM−1
1

√
2
.

(2) For (m + 1) ≤ αM ≤ (M − N + m + 1), m ≤ αM−1 ≤ (M − N + m),

V [M]1
αMαM−1

= δαM(αM−1+1)

 β2
m(αM−1−m)

/CαM−1
M

β2
m(αM−1−1−m)

/CαM−1−1
M + β2

m(αM−1−m)
/CαM−1

M

. (A.383)

For αM = m, 1 ≤ αM−1 ≤ (M − N + m + 1), V [M]0
αMαM−1

= 0. Otherwise, V [M]0
αMαM−1

= δαMαM−1
1

√
2
.

6. Case n = M + l.
(1) For (m + 1) ≤ αM+l ≤ (M − N + m − l + 1), (m + 2) ≤ αM+l−1 ≤ (M − N + m − l + 2),

V [M+l]0
αM+lαM+l−1

= δαM+l(αM+l−1−1)


αM+l−1 − m − 1
M − N − l + 1

. (A.384)

For αM+l = (M − N + m − l + 2), 1 ≤ αM+l−1 ≤ (M − N + m + 1), V [M+l]0
αM+lαM+l−1

= 0. Otherwise V [M+l]0
αM+lαM+l−1

=

δαM+lαM+l−1
1

√
2
.

(2) For (m + 1) ≤ αM+l, αM+l−1 ≤ (M − N + m − l + 1),

V [M+l]1
αM+lαM+l−1

= δαM+lαM+l−1


M − N − l − αM+l−1 + m + 2

M − N − l + 1
. (A.385)

For αM+l = (M − N + m − l + 2), 1 ≤ αM+l−1 ≤ (M − N + m + 1), V [M+l]0
αM+lαM+l−1

= 0. Otherwise V [M+l]0
αM+lαM+l−1

=

δαM+lαM+l−1
1

√
2
.

Here we have got all the operators V [n]in
(m) for 0 ≤ m ≤ N−m. WhenN−m < m ≤ N , one can find that V [n]in

(m) = V [n]in
(N−m),

in = in + 1 (mod2).

A.2. N → M sequential UQCM of qudits

1. Case n = 1.

λ[1]
α1

=

M−N−j′
k=−j′

β2
m(j′+k)

mi1+1 + j′i1+1 + ki1+1

M
,

where βmj =

d
i=1 C

mi
mi+ji

/CM−N
M+d−1.

Γ [1]i1
α1

= δα1j′ .

V [1]i1
α1

= Γ [1]i1
α1

λ[1]
α1
.

2. Case 1 < n ≤ M − 1.

λ
[n]
j′ =

M−N−j′
k=−j′

β2
m(j′+k)

d
i=1

C
j′i
j′i+ki+mi

/Cn
M .

λ
[n−1]
j′′ =

M−N−j′′
k′=−j′′

β2
m(j′′k′)

d
i=1

C
j′′i
j′′i +k′i+mi

/Cn−1
M .

Γ
[n]in
j′′αn

= δαn(j′′+êin+1)
1

λ
[n−1]
j′′


j ′′in+1 + 1

n
.

V [n]in
αnj′′

= δαn(j′′+êin+1)


j ′′in+1 + 1

n

λ
[n]
j′′+êin+1

λ
[n−1]
j′′

.
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3. Case n = M .

λ
[M]

j′′ = βm(j′−m).

λ
[M−1]
j′′ =

 d−1
iM=0

β2
m(j′′−m+êiM+1)

j ′′iM+1 + 1

M
.

Γ
[M]iM
j′′αM

= δαM (j′′+êiM+1)
1

λ
[M−1]
j′′


j ′′iM+1

M
.

V [M]iM
αM j′′ = δαM (j′′+êiM+1)

λ[M]
αM

λ
[M−1]
j′′


j ′′iM+1

M
.

4. Case n = M + l.

λ
[M+l]
j′ =

M−N+m−j′
k=m−j′

β2
m(j′−m+k)

d
i=1

Cki
j′i−mi+ki

/C l
M−N .

λ
[M+l−1]
j′′ =

M−N+m−j′′
k=m−j′′

β2
m(j′′−m+k)

d
i=1

C
k′i
j′′i −mi+k′i

/C l−1
M−N .

Γ
[M+1]in
j′′αn

= δαn(j′′−êin+1)
1

λ
[M+l]
αn


j′′in+1 − min+1

M − N − l + 1
.

V [n]in
αnj′′

= δαn(j′′−êin+1)


j′′in+1 − min+1

M − N − l + 1
.

With the above information, one can build the explicit form of V [n]in according to the 2-dimensional case, and the
extension is direct.
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