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A distinct electronic structure was observed in the single-layer FeSe which shows surprisingly
high-temperature superconductivity over 65 K. Here, we demonstrate that the electronic structure can
be explained by the effective strain effect due to substrates. More importantly, we find that this electronic
structure can be tuned into robust topological phases from a topologically trivial metallic phase by the spin-
orbital interaction and couplings to substrates. The topological phase is robust against any perturbations
that preserve the time-reversal symmetry. Our study suggests that nontrivial topology and high-Tc

superconductivity can be intertwined in the single FeSe layer to search novel physics.
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I. INTRODUCTION

In the past several years, there have been rapid develop-
ments in the two research fields of condensed matter physics,
iron-based high-temperature superconductors [1] and
topological insulators [2,3]. The former includes many
iron-pnictide and iron-chalcogenide materials in which
the three-dimensional (3D) electrons of Fe atoms control
electronic properties. The latter includes many semiconduc-
tors with strong spin-orbital couplings among p orbital
electrons. It is well known that the combination of topo-
logical properties with superconductivity can lead to many
new physics, such as the creation of Majorana particles [2].
Normally, the combination is through a proximity effect
by placing a topological insulator close to a conventional
superconductor to induce superconductivity. However, the
iron-based high-temperature superconductors are hardly
candidates for such integration processes because they have
short coherent length in the superconducting state. Thus,
until now, these two fields have had little overlap.
The single-layer (SL) FeSe film [4–10] that is epitaxially

grown on an SrTiO3ð001Þ surface exhibits several unique
features compared with the bulk FeSe [11,12] and other
Fe-based superconductors [13,14]. In the bulk FeSe, the
superconducting transition temperature Tc ∼ 8 K [11], and
the electronic structure is characterized by the presence of
both hole pockets around the Γ point and electron pockets
around the M point in the first Brillouin zone(BZ) [15,16].

In the SL FeSe, Tc exceeding 65 K was observed [4].
Furthermore, there are only electron pockets around the M
point, and the hole pockets at the Γ point are absent
[5–7]. The ARPES experiments [5,6] have shown that the
electronic structure of the SL FeSe cannot be obtained
through the direct rigid band shifting because a new band
gap below the Fermi surface is developed at the M point.
In this paper, we demonstrate that the SL FeSe is a

potential candidate to integrate high-Tc superconductivity
together with topological properties. First, we discuss the
origin of the novel band structure as a result of the lattice
mismatch between the FeSe and substrate SrTiO3. We
demonstrate that the lattice distortion can induce a phase
transition around the M point from a gapless phase to a
gappedphase and simultaneously suppress the holelike band
at the Γ point. Second, we find that the spin-orbital coupling
can drive the SL FeSe from the trivial metal or semi-
conductor phase to a nontrivial topological insulating or
metal phase. We calculate the phase diagram of the material
in the presence of the spin-orbital coupling and the coupling
to the substrate. As the gap at theM point is induced through
coupling to the substrate so that the gap amplitude can be
adjustable from zero to a finite value, a robust topological
phase can always be achieved in the SL FeSewhen the spin-
orbital coupling strength can overcome the gap. Our finding
allows us to intertwine the nontrivial topology and high-Tc
superconductivity within one material.

II. MODEL FOR THE BAND STRUCTURE
OF THE SINGLE-LAYER FeSe

In this section, we discuss the origin of the novel band
structure as a result of the lattice mismatch between the
FeSe and substrate SrTiO3, and we demonstrate that the
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lattice distortion can induce a phase transition around the
M point from a gapless phase to a gapped phase and
simultaneously suppress the holelike band at the Γ point.
It is known that the electronic structure in the bulk FeSe

is two dimensional and determined by the single-FeSe
trilayer structure, as shown in Figs. 1(a) and 1(b) in which
the unit cell includes two Fe, labeled as A and B, and two
Se. The band-structure calculations from the density func-
tional theory (DFT) show that only the five 3D orbitals of
Fe play significant roles near Fermi surfaces [15]. A general
effective d-orbital model for the band structure in real space
can be written as

Ht ¼
X
σ

X
mn

X
ij

ðtmn
ij þ ϵmδmnδijÞd†m;σðiÞdn;σðjÞ: ð1Þ

Here, σ labels the spin; m; n label five d orbitals:
(dxz, dyz, dx2−y2 , dxy, dz2); i; j label lattice sites; tmn

ij are the
corresponding hopping parameters; ϵm is the on-site energy

of the d orbital; and d†m;σðiÞ creates a spin-σ electron in the
mth orbital of Fe at site i. In the momentum space, the
Hamiltonian can be written as

Ht ¼
X
k

ϕ†ðkÞAðkÞϕðkÞ þ
X
k0
ϕ†ðk0ÞAðk0Þϕðk0Þ: ð2Þ

Here, k is defined in the BZ of the one-Fe unit cell, and
k0¼kþQ with Q¼ðπ;πÞ. ϕðkÞ¼½dxzðkÞ;dyzðkÞ;dx2−y2ðkÞ;
dxyðkÞ;dz2ðkÞ�T . AðkÞ has been widely utilized to describe
the electronic structure of all kinds of iron-based super-
conductors [17,18]. The difference between the one-Fe unit
cell and the two-Fe unit cell has been discussed in detail
[17,19]. Theoretically, the effective one-Fe unit-cell picture
is usually used for simplicity, and the explicit form of AðkÞ
is presented in Appendix A.
The Fermi surface and band structure along high-

symmetry lines are shown in Figs. 1(c) and 1(d). In
Fig. 1(c), there are three hole pockets around the Γ point
and two electron pockets around the M point. We have
specified that the black pockets in Fig. 1(c) are from AðkÞ,
while the red pockets are from Aðk0Þ. In Fig. 1(d), the solid
or dashed lines denote the bands from AðkÞ or Aðk0Þ.
In Fig. 1, there is no gap opening in the band structure at

the M point. To gain the insight of the gap opening
observed experimentally in the SL FeSe, we analyze the
symmetry characters of the bands. As shown in Fig. 1, there
are four bands along the Γ-M direction near Fermi surfaces.
Each AðkÞ and Aðk0Þ contribute two bands. The bands
contributed from AðkÞ and Aðk0Þ have opposite parity
[19,20]. The two bands from AðkÞ belong to A2 and B2

representations [21], which is the reason why the two bands
can cross each other without showing the sign of hybridi-
zation. However, the two bands from Aðk0Þ belong to the
same B1 representations [21]. If these two bands cross each
other, the hybridization must arise. We notice that these two
bands mainly have dxz and dxy orbital characters, respec-
tively, near the M point. Moreover, the symmetries of the
bands do not depend on the interorbital couplings because
the couplings between two different d orbitals at high-
symmetry points, such as Γ and M, vanish. Therefore, we
can adjust the relative energy difference between dxz and
dxy at M points to create a crossing between the two bands.
Such a crossing can result in a gap opening at the M point
because of the hybridization.
To confirm the above symmetric analysis, we present an

evolution of the band structure by manipulating hopping
parameters in Fig. 2. The bulk band structures are shown
in Figs. 2(a) and 2(d). Note that we set all interorbital
hoppings to zero in Fig. 2(a) in order to clearly distinguish
the five d-orbital bands. In Fig. 2(a), the red-dashed dxz
band and the blue-dashed dxy band have no crossing along
the ð0; 0Þ − ðπ; 0Þ line. In Fig. 2(d), there is no band-gap
opening around the M point, i.e., (π; 0) [see the red
rectangle region in Fig. 2(d)]. When we adjust the values
of some hopping parameters (see the caption of Fig. 2), the
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FIG. 1. (a) The lattice structure of FeSe. (b) The top view of
(a). The two-Fe unit cell is enclosed by the dashed lines, with the
two-Fe sublattice labeled with A and B. The inverse center is
labeled by the red elliptic spot at the midpoint of the A-B link.
(c) The Fermi surface for the bulk FeSe, with three hole pockets
located around the Γ point and two electron pockets around the M
point in the two-Fe BZ. The two-Fe BZ is enclosed by the dashed
lines. (d) The band structure along high-symmetry lines. “(e), (f)”
The schematic Fermi surface for SL FeSe is shown in the one-Fe
and two-Fe unit-cell picture. The shaded region is the corre-
sponding BZ. In (e), Q ¼ ðπ; πÞ is the folding wave vector.
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red-dashed dxz band is pushed down and the blue-dashed
dxy band is pushed up. The critical case is shown in
Fig. 2(b); the two bands meet each other at the M point.
Then, a further push leads to the crossing between red-
dashed dxz and blue-dashed dxy bands at some point
between (0,0) and (π; 0) [see Fig. 2(c)]. Turning on the
interorbital hoppings, we obtain a new band structure
shown in Fig. 2(f). Compared with the bulk bands in
Fig. 2(d), the bands in Fig. 2(f) present some new features,
such as the following: (1) The hole pockets around the Γ
point are pushed down the Fermi energy, with only electron
pockets around the M point surviving, (2) the band top of
the hole pockets has nearly the same energy as the band
bottom of the electron pockets, and (3) there is a band gap
opened at the M point [see the red rectangle region in
Fig. 2(f)]. These features, as shown in Fig. 2(f), are
comparable to the ARPES observations [5,6].
From Fig. 2, we can find that the evolution of the band

structure from bulk FeSe to a SL FeSe is strongly sensitive
to the change of a single hopping parameter t11x ; i.e., the
amplitude of intra-dxz=dyz hopping along the x=y direc-
tions. Namely, the nearest-neighbor intraorbital hoppings
for dxz and dyz changes from the strong anisotropy in the
bulk FeSe to near isotropy in the SL FeSe. We argue that
this is the essential reason to drive the electronic structure
of the SL FeSe. The SL FeSe film is epitaxially grown on
an SrTiO3ð001Þ surface. Consequently, the lattice constant
for the SL FeSe film should match the lattice constant for
SrTiO3, i.e., 3.905 Å. Compared with the bulk FeSe with
the lattice constant 3.76 Å [11], the apparent lattice
mismatch between FeSe and SrTiO3 should exert a strong
tensile strain on the FeSe film and drive the lattice
distortion for the FeSe film [7,8]. The lattice distortion
naturally induces the change of hopping. To show the effect
of the lattice distortion on hopping parameters, we have

used the Slater-Koster method [22] to calculate the overlap
integrals between different orbitals. The detailed deriva-
tions and calculations are presented in Appendix B. We find
that the t11x are strongly affected by the lattice distortion,
and other hoppings are weakly adjusted. This is consistent
with our above analysis.

III. FULL HAMILTONIAN AND THE
SPIN-ORBITAL COUPLING IN THE SL FeSe

After obtaining the new band structure, we can ask
whether the new band gap at the M point [see the red
rectangle region in Fig. 2(f)] is topologically trivial or
nontrivial when the spin-orbital coupling (SOC) is consid-
ered. As the t2g orbitals are significant near the Fermi
surface, we can write the SOC within the t2g subset. Up to
the next-nearest neighbor, the general SOC Hamiltonian in
momentum space can be written as

Hso ¼ Hso1 þHso2; ð3Þ

Hso1 ¼
X
~k¼k;k0

ð−1Þσλ⊥ð~kÞd†xz;σð~kÞdyz;σð~kÞ þ H:c:; ð4Þ

Hso2¼
X
~k¼k;k0

½iλ∥;xzð~kÞd†xz;↑ð~kÞþλ∥;yzð~kÞd†yz;↑ð~kÞ�dxy;↓ð~kþQÞ

−
X
~k¼k;k0

d†xy;↑ð~kÞ½iλ∥;xzð~kÞdxz;↓ð~kþQÞ

þλ∥;yzð~kÞdyz;↓ð~kþQÞ�þH:c: ð5Þ
Here, σ ¼ ∓ for spin ↑ or ↓, λ⊥ð~kÞ ¼ ðλo⊥þ
4λnn⊥ cos ~kx cos ~kyÞ, and λ∥;xz=yzð~kÞ ¼ λo∥. The index α ¼
o; nn in the λα∥;⊥ indicates the on-site and next-nearest-
neighbor SOC, respectively. Hso1 describes the SOC
between dxz and dyz orbitals. This term does not flip spin;
it conserves momentum with respect to the one-Fe unit cell.
Hso2 describes the SOC between dxy and dxz;yz. This term
flips spin and does not conserve momentum with respect to
the one-Fe unit cell. Therefore, Hso2 essentially breaks the
nonsymmorphic lattice symmetry in the SL FeSe, namely, a
one-unit translation along the Fe-Fe direction followed by a
mirror reflection with respect to the layer [23]. In the
presence of Hso2, the two-Fe unit cell cannot be reduced to
the one-Fe unit cell.
The Hso2 is not the only term that breaks the reduction

to the one-Fe unit cell. If we consider the effect of the
substrate, the space inversion symmetry is naturally broken
for the SL FeSe. Such a parity breaking can also result in a
term that only preserves the two-Fe unit cell [20],

Hs ¼
X
m;σ

X
~k¼k;k0

ξsð~kÞd†m;σð~kÞdm;σð~kþQÞ: ð6Þ

Here, ξsð~kÞ measures this parity-breaking effect. Likewise,
we only focus on three t2g orbitals. If we take a constant
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FIG. 2. (a)–(c) The band structures along high-symmetry lines
for the case without interorbital hoppings. (a) The bulk case.
(b) The adjusted parameters t44xy ¼ 0.066, t14x ¼ 0.405, and
t11x ¼ −0.120. (c) t44xy ¼ 0.036, t44x ¼ 0.163, t14x ¼ 0.405, and
t11x ¼ −0.311. The solid and dashed lines are from
AðkÞ=AðkþQÞ. The red, magenta, blue, black, and green lines
are the dxz=dyz=dxy=dx2−y2=dz2 bands. (d)–(f) The cases with
interorbital hoppings, corresponding to (a)–(c).
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ξsð~kÞ, the term describes a staggered potential in the iron
square lattice.
The full Hamiltonian for the electronic structure of the

SL FeSe with a substrate is a combination of Ht, Hso, and
Hs, namely,

H ¼ Ht þHso1 þHso2 þHs: ð7Þ
The last two terms in H only preserve the translational
symmetry with respect to the two-Fe unit cell.

IV. TOPOLOGICAL PHASES AND
EFFECTIVE HAMILTONIAN

We first concentrate on the effect of Hso1 which
preserves the one-Fe unit cell. Namely, we ignore both
Hso2 andHs. The glancing features can be revealed through
the numerical results of the band structure of the
Hamiltonian H ¼ Ht þHso1. The results are shown in
Fig. 3. In Figs. 3(a)–3(c), it is explicitly shown that the band
gap undergoes a closing and reopening process at the M
point when λo⊥ and λnn⊥ are tuned from zero to some finite
values. Such a phenomenon is a strong indication of a
topological phase transition [24,25]. Figures 3(d)–3(i)
provide a clear proof of the occurrence of the topological
phase transition. The spectra in Figs. 3(d)–(f) and
Figs. 3(g)–(i) are plotted within the one-Fe unit cell and
the two-Fe unit cell, respectively. The latter can be obtained
through folding the one-Fe unit-cell picture with the folding
wave vector Q ¼ ðπ; πÞ shown in Fig. 1(e). It is clear that
the signature of the topological phase, gapless edge states,
emerges after the reopening of the band gap.
We can also construct an effective Hamiltonian to

describe the topological transition. We define the new

basis for dxz and dyz orbitals according to the eigenstates of
azimuthal quantum number l ¼ 2 and magnetic quantum
number m ¼ �1, i.e., dð2;1Þ;σð~kÞ ¼ −ð1= ffiffiffi

2
p Þ½dxz;σð~kÞ þ

idyz;σð~kÞ� and dð2;−1Þ;σð~kÞ ¼ ð1= ffiffiffi
2

p Þ½dxz;σð~kÞ − idyz;σð~kÞ�.
Around each M point, the band structure can be spanned
by Ψeffð~kÞ ¼ ½ϕeff;↑ð~kÞ;ϕeff;↓ð~kÞ�T, with ϕeff;σð~kÞ ¼
½dxy;σð~kÞ; dð2;−ð−1ÞσÞ;σð~kÞ�T , and it is described by the
effective Hamiltonian

Heff ¼
X
~k¼k;k0

Ψ†
effð~kÞHeffð~kÞΨeffð~kÞ; ð8Þ

where

Heffð~kÞ ¼
X5
a¼0

εað~kÞΓa þ
X5

a<b¼1

εabð~kÞΓab ð9Þ

is a 4 × 4 matrix. The Γ matrices are defined
as Γð0;1;2;3;4;5Þ ¼ ðτ0 ⊗ s0; τ0 ⊗ sz; τ0 ⊗ sy; τz ⊗ sx; τy ⊗ sx;
τx ⊗ sxÞ, where the Pauli matrices τ and s span the orbital
and spin subspaces, and Γab ¼ ½Γa;Γb�=ð2iÞ. The nonzero
elements are ε0=1ð~kÞ¼ð1=2Þ½Exyð~kÞ�Eð2;−1Þð~kÞ�jλ⊥ð~kÞj�
and ε12=13ð~kÞ ¼ � ffiffiffi

2
p

t14x sin ~ky=x, in which Exyð~kÞ ¼ A44ð~kÞ
and Eð2;−1Þð~kÞ ¼ ð1=2Þ½A11ð~kÞ þ A22ð~kÞ�.
The above effective Hamiltonian has the same form as

that for HgTe quantum wells [25]. At each M point, the
band gap of Eq. (9) is measured by a Dirac mass ε1ð~kÞ.
When the λ⊥ð~kÞ overcomes the trivial band gap measured
by Exyð~kÞ − Eð2;−1Þð~kÞ, namely, when the mass ε1ð~kÞ < 0
changes its sign from positive to negative, a trivial to
nontrivial topological phase transition arises.
We notice that there are two nontrivial Dirac cone

structures without considering the spin degree of freedom
in Hamiltonian H ¼ Ht þHso1 as indicated by the edge
states with red and blue colors in Fig. 3(i). This is because
the Hamiltonian preserves the full nonsymmorphic lattice
symmetry so that the band structure decouples into two
independent parts in view of the two-Fe unit cell. In the
two-Fe unit-cell BZ, there are two nontrivial Dirac cone
structures at each BZ zone corner, with one for each part. If
we understand this in the one-Fe unit-cell picture, only one
nontrivial Dirac cone structure exists at each M point of
the one-Fe BZ, as indicated by the edge states with red or
blue colors in Fig. 3(f), and this nontrivial Dirac cone
structure can be characterized by a Z2 time-reversal
invariant topological number when the spin degree of
freedom is taken into account [24,25]. However, with even
(two) nontrivial Dirac cone structures in the view of 2-Fe
unit-cell picture as indicated by the edge states with red
and blue colors in Fig. 3(i), the topological phase generally
is unstable. One can imagine that any perturbations that
break nonsymmorphic lattice symmetry may lead to a
coupling between the two nontrivial Dirac cone structures,
and this coupling opens a gap between the relevant edge
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FIG. 3. (a)–(c) The spectrum along high-symmetry lines for
different SOC parameters with (a) λo⊥ ¼ 0, λnn⊥ ¼ 0,
(b) λo⊥ ¼ 0.32, λnn⊥ ¼ 0.08, and (c) λo⊥ ¼ 0.5, λnn⊥ ¼ 0.12. Other
parameters λo∥ and ξs are set to zero. (d)–(f) [(g)–(i)] are the
corresponding one-Fe unit-cell (two-Fe unit-cell) edge spectrum
with open boundary along the x direction. The width of the
single-layer film is 21 in units of the lattice constant.
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states with red and blue colors shown in Fig. 3(i).
Therefore, we call this topological phase the weak topo-
logical phase [26].
As we mentioned earlier, in the general Hamiltonian

[Eq. (7)] for the SL FeSe with a substrate, bothHso2 andHs

break the nonsymmorphic lattice symmetry. Therefore, we
have to determine how these two terms affect the weak
topological phase. First, we consider the effect of Hso2.
Indeed, the spin-flip term in Hso2 induces the couplings
between the two Dirac cones to create a gap on the edge
states. If we assume that the SOC parameter λo∥ is small, the
gap that is open on the edge states is given by ∼jλo∥j2=jt14x j.
Therefore, in principle, the λo∥ term in Eq. (5) can be
considered as a controlling parameter of the gap. The
situation is very similar to a topological crystalline insulator

[27,28] and the topological phase in a system with a
nonsymmorphic lattice symmetry [29].
However, if we turn on Hs, the situation is drastically

different. Rather than destroying the topological phase,
we find that Hs can stabilize the topological phase and
that it drives the system to a strong topological phase.
To understand it, we consider the effective Hamiltonian
in Eq. (8) describing the weak topological phase. If
we add Hs, for λ⊥ðkÞ > 0, the spectrum becomes
EðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ212ðkÞ þ ϵ213ðkÞ þ ½ϵ1ðkÞ � ξs�2

p
. We can find

that the effect of Hs is to change the Dirac masses at the
two M points. The changes, ε1ðkÞ � ξs, are different for the
Dirac cones at the two different M points. Therefore,Hs can
create a band inversion in one Dirac cone but not the other, a
case for a strong topological phase with an odd number
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phase. (b2) is the critical point. (e1)–(h1) The evolution of the spectrum with kx ¼ π, ky ∈ ½−ðπ=2Þ; ðπ=2Þ� for parameters ðλo⊥; λnn⊥ ; λo∥; ξsÞ
with the values (0.2,−0.05,0,0) in (e1), (0.2,−0.05,0,0.2) in (f1), (0.2,−0.05,0,0.6) in (g1), and (0.2,−0.05,0.2,0.6) in (h1). (e2)–(h2) are the
corresponding edge spectra with an open boundary along the x direction. (e2) is the trivial phase, and (g2) and (h2) are the strong topological
phase. (f2) is the critical point. In (a2)–(d2) and (e2)–(h2), the width of the single-layer film is 21 units of Fe-Fe lattice constants.
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of nontrivial Dirac cones. Thus, the strong topological phase
is robust against any non-time-reverse-symmetry broken
couplings, including the Hso2, as long as the coupling does
not close the bulk energy gap.
The numerical proof of the above analysis is plotted in

Fig. 4 in which the edge spectra in Figs. 4(d2) and 4(h2)
clearly indicate a strong topological phase. More specifi-
cally, we discuss the strong topological phases in two cases:
(1) ε1ðkÞ < 0 and (2) ε1ðkÞ > 0. In the first case, when
jε1ðkÞj < ξs, one of the nontrivial Dirac cones undergoes
another gap-close-and-reopen process and becomes a trivial
one with positive mass ε1ðkÞ þ ξs > 0. At each M point,
only one nontrivial Dirac cone survives. The band evolution
for this process is shown in Figs. 4(a1)–4(d2). In the second
case, when jε1ðkÞj < ξs, one of the trivial Dirac cones
undergoes a gap-close-and-reopen process and becomes a
nontrivial one with negative mass ε1ðkÞ − ξs < 0. At each
M point, only one nontrivial Dirac cone emerges. The band
evolution for this process is shown in Figs. 4(e1)–4(h2).
In the first case, one needs relatively large SOC and the

parity-broken coupling to overcome the trivial band gap and
eliminate one nontrivial Dirac cone. In the second case, we
can see that a finite value Hs can create a region of a strong
topological phase and can dramatically reduce the critical
SOC that is necessary for a topological phase.
The phase diagrams for the topological transition are

plotted in Fig. 5. In Fig. 5(a), we plot the phase diagram for
the case of the weak topological phase with respect to the
parameters λo⊥ and λnn⊥ . Here, the topologically metal phase
means the holelike band top at the Γ point is higher than the
electronlike band bottom around the M point so that we
cannot tune the system into a full insulating phase;
however, there is a gap at the M point to protect the
topological phase. In the topologically insulating phase, the
edge states propagate along the edges of the materials with
opposite velocities for different spin components. The
pictures of the edge states and the Dirac cones are
schematically shown in Figs. 5(c) and 5(e), respectively.
In Fig. 5(b), we plot the phase diagram for the λ⊥ðkÞ > 0
case with respect to the parameter ξs in Hs and λ⊥ðπ; 0Þ.
The A and B points correspond to the cases shown in
Figs. 4(c1) and 4(g1). The transport picture for the edge
states is shown in Fig. 5(d), which matches the single
nontrivial Dirac cone structure shown in Fig. 5(f).

V. DISCUSSION AND SUMMARY

There were several calculations on the electronic struc-
tures of the monolayer FeSe on SrTiO3 based on the DFT
[30–32]. These works focus on the magnetic orders of the
materials. In Ref. [30], the FeSe monolayer was argued to
behave like a slightly doped semiconductor with a collinear
antiferromagnetic order on the Fe lattice, and no strong
hybridization of the electronic states between the sub-
strate and the FeSe film was found. In Refs. [31,32], the
checkerboard antiferromagnetic order on the Fe lattice was
argued to be favored, and the hybridization between the
substrate and the FeSe film was argued to be strong enough
to suppress the hole pockets around the Γ point. The
existence of the magnetic order is still up for debate since
experimentally it is extremely difficult to measure any
magnetic order in the monolayer.
However, the band structure obtained from the DFT

calculations in the normal state does not capture the essential
gap opening at the M points, which is the key focus in this
paper. In otherwords, theDFT calculation fails to capture the
experimental results. In fact, it is understandable why it is
difficult for DFT calculations to capture the gap behavior
at the M point. If we compare the experiments with the DFT
calculations, we find that all the DFT calculations assume
the ideal interface connection between the monolayer FeSe
and the substrate SrTiO3. Experimentally, the strong electron
doping in the SL FeSe is realized by the annealing process,
which may lead to loss of Se or O or rearrangement of Fe
and Se on the SrTiO3 surface [5]. These potential effects
may enhance the strain effect and strongly affect the
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FIG. 5. (a) The phase diagram as a function of λo⊥ and λnn⊥ . Here,
M, TM, and TI label metallic, topologically metallic, and
topologically insulating phases, respectively. (b) The phase
diagram as a function of λ⊥ðπ; 0Þ and ξs for λ⊥ðπ; 0Þ > 0. Here,
WI, ST, and N label weak topological, strong topological, and
normally trivial phases, respectively. “(c),(d)” The picture of the
accumulation of spin currents in the weak and strong topological
insulating phases of SL FeSe with the rectangle geometry. Here,
“⊗”/“⊙” labels the majority of spin-up and spin-down compo-
nents. The color corresponds to Fig. 3(i) and Fig. 4(d2) and 4(h2).
(e) The two nontrivial (trivial) Dirac cones with negative (positive)
mass m correspond to Fig. 4(a1) [Fig. 4(e1)] around M points in
BZ. Red and blue label the Dirac cone structures with even and
odd parities, respectively. (f) The single nontrivial Dirac cone with
negative mass m [Figs. 4(c1) and 4(g1)] around M points in BZ.
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orbital-dependent hoppings. Another point is that the corre-
lation effect may play a role as well. It can adjust the Fermi
level of the band ofmonolayer FeSe. In principle, this kind of
correlation effect on band structure can also be renormalized
into some hopping parameters. Capturing these complicated
processes is beyond the current DFT capability. This is also
the essential reason that motivates us to use the analytic
approach combined with symmetry analysis to understand
the gap behavior at the M point.
According to the aforementioned discussion, we see that

the topological phase is associated with three key param-
eters: the trivial band gap, the intrinsic spin-orbital coupling
strength at the M points, and the parity-broken coupling
induced by the substrates. The bare spin-orbital coupling
strength of Fe atoms is estimated to be around 80 meV in
Ref. [33] and 50 meVin Ref. [34]. It can cause a bare energy
splitting of about 50–100 meV around the M point.
Considering the renormalization effect (about 4 in FeSe),
the real splitting of the band caused by the SOC would be
around 12–25 meV. Although we may replace Fe by heavier
atoms such as Ru to further increase the SOC strength, the
strength of the SOC, more or less, is a fixed quantity in the
FeSe. However, the trivial band gap and parity-broken
coupling at the M point can be engineered. With different
substrates, the in-plane lattice constant can be tuned from
3.67 to 4 Å, which has recently been demonstrated in
FeSe=STO=KTO [35] and FeSe=BTO [8] structures. There
are many substrates that can be used for this interface
engineering [8]. The trivial band gap can be estimated by the
DFT calculations. For the isolated SL FeSe, when the lattice
distortion of Fe-Fe bond changes from 3.95 Å, 3.97 Å to
4.00 Å, the corresponding trivial band gap changes from
5meV, 18 meV to 50 meV. If we assume the trivial band gap
is 5 meV in the single-layer FeSe, the weak topological
phase needs λc1⊥ > 5 meV for ξs ¼ 0, and the strong
topological phase needs λc2⊥ > 2 meV for ξs > 3 meV.
Thus, the SOC of around 12–25 meV is enough to realize
the topological phase for SL FeSe with a lattice constant of
about 3.95 Å. If the SL FeSe has a lattice constant of about
4.00 Å, we need a quite large parity-broken coupling ξs to
overcome the trivial band gap of about 50 meV to realize
the strong topological phase. In Sec. I, we have shown the
qualitative relationship between the gap and lattice param-
eters t11x . An accurate quantitative prediction of the trivial
band gap on different substrates is beyond the capability of
any current numerical methods. Nevertheless, as we know,
in one limit, the large band gap (about 50 meV, measured by
ARPES [8]) is created in the SL FeSe with STO and BTO
substrates, and in the other limit, it vanishes in the bulk
FeSe; we have shown the tunable gaps in a SL FeSe for
several different lattice constants, and we believe that
tunability should be realized by the interfacial engineering
technique. Furthermore, the parity-broken coupling can be
larger when the interaction with a substrate is stronger. ξs is

tunable with large flexibility. Hence, realizing the topologi-
cal phase in the SL FeSe is very promising.
It is also possible to further extend the above analysis to

the bulk materials. According to our above discussions, the
difference of the electronic structures between the SL FeSe
and the bulk FeSemainly originates from the lattice distortion
induced by the substrate, and the ratio between the height of
Se and the Fe plane and the length of the Fe-Fe bond uniquely
measures this difference.When the ratio declines less than the
threshold value, a band gap is opened around the M point.
Experimentally, this ratio can be tuned by applying internal or
external pressure to the materials. Therefore, we suggest that
this topological transition may be realized in the bulk
materials of iron-based superconductors if the intensity of
SOC is comparable to the band gap around the M point.
We want to emphasize advantages to realize the topo-

logical phase in iron-based superconductors. We noted that,
recently, a topological insulator based on the BCS-type
superconductor BaBiO3 was proposed, and a p-n junction
fabricated with hole-doped and electron-doped BaBiO3

was argued to host Majorana fermions [36]; many conven-
tional hybridized systems are proposed to realize topologi-
cal superconductors [2] and Majorana fermions [37,38] in
which the superconductivity is induced through the prox-
imity effect of a conventional s-wave superconductor. Here,
the superconducting mechanism in FeSe is believed to be
beyond the BCS type, and the superconductivity can take
place at much higher temperatures as the superconductivity
behavior has been observed above 60 K in the single FeSe
layer [5–7]. Furthermore, the superconductivity and top-
ology is naturally integrated in the SL FeSe, and one may
change doping and use different substrates to adjust such an
integration. More interestingly, the SL FeSe system could
be a topological superconductor at low temperatures. A
time-reversal-invariant topological superconductor must
satisfy two criterions [39]: (1) The system must have
odd-parity pairing symmetry with a full superconducting
gap, and (2) its Fermi surface must enclose an odd number
of time-reversal-invariant momenta. The recently proposed
odd-parity pairing scenario [20,40] and the unique features
of the electronic structures of SL FeSe can fulfill these two
criterions. Detailed discussions are beyond the scope of the
present paper, and we will present the results elsewhere.
Before we summarize the main results of this paper, we

now discuss the experimental identification of the topologi-
cal phase in the SL FeSe. Experimentally, there is a series of
electrical and magnetic transport measurements that can be
used to detect the basic signatures of the topological phase,
and such kinds of measurements have been successfully
adopted to verify the topological phase with a quantum-spin
Hall effect in the famous two-dimensional (2D) HgTe-CdTe
quantum-well system [25,41]. More relevantly, the SL FeSe
system is comparable to the HgTe-CdTe quantum-well
system because the topological phase transition in the SL
FeSe system is tuned by the strain effectwhile the topological
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phase transition in HgTe-CdTe quantumwells is tuned by the
thickness of the HgTe quantum well. Both the strain effect
and the thickness of the quantum well can be easily
modulated by current material-engineering techniques.
Thus, the transport measurements on the HgTe-CdTe quan-
tum wells can be utilized to detect the topological phase of
the SL FeSe. The experimental signatures identifying the
topologically trivial and nontrivial phases must meet the
following criterions: (1) There should (not) exist a residual
conductance plateau in the nontrivial (trivial) insulating
regime as one varies the external gate voltage that is applied
to tune the Fermi level, and the plateau should be indepen-
dent of the sample width in the nontrivial phase, (2) the Hall
conductance will present different values when one changes
the gate voltage and external magnetic field in the nontrivial
phase, but the Hall conductance vanishes in the trivial phase,
and (3) at the edge of the sample, there should be spin
accumulation that can be detected by spin-filtered measure-
ments. It is also possible to measure edge states by scanning
tunneling microscopy (STM) measurements. Recently, 1D
topological edge states in Bi bilayer island structures formed
on the surface of several different substrates (such as the
clean Bi2Te3 andBi(111)-covered Bi2Te3, cleavedBi2Te2Se
crystal, and single Bi crystal [42–44]) have been identified by
STM. In these experiments, the STM images clearly showed
the existence of the edge states along the step edge of the Bi
bilayer. Because of the structure analogy between the Bi
bilayer grown on single Bi crystal and/or Bi2Te2 and SL
FeSe grown on STO/KTO, similar STM measurements can
also be carried out to identify the topological signatures in the
SL FeSe system. Moreover, we expect that the identification
should be easier in the SL FeSe system compared with the Bi
bilayer system because the substrate STO/KTO in the SL
FeSe system is a nonpolar pseudocubic band insulator with
an electronic gap about 3.2 eV for STO, while the substrates
in the Bi bilayer system would have surface states that would
probably hybridize with the edge states.
In conclusion, we show that the single-layer FeSe presents

distinct and abundant structures comparedwith the bulk FeSe
through its interaction with the substrates. We predict that
there exists a strong topological phase in the SL FeSe. Thus,
the single-layer FeSe not only serves as the building block for
the iron-chalcogenide high-temperature superconductors, but
it can also be an inherent topologicalmaterialwithout doping.
It is conceivable that many important physics applications
can emerge when nontrivial topology and the high-Tc
superconductivity are intertwined within a single material.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN
FOR BULK FeSe

In lattice space, the tight-binding (TB) Hamiltonian is
given by

Ht ¼
X
σ

X
mn

X
ij

ðtmn
ij þ ϵmδmnδijÞd†m;σðiÞdn;σðjÞ: ðA1Þ

Here, σ labels the spin; m; n label five d orbitals; i; j label
the lattice site; tmn

ij are the corresponding hopping param-

eters; and ϵm is the on-site energy of the d orbital. d†m;σðiÞ
creates a spin-σ electron in the mth orbital of Fe at site i.
For convenience, we utilize (1,2,3,4,5) to denote five
(xz; yz; x2 − y2; xy; z2) orbitals. In momentum space, the
TB Hamiltonian is given by

Ht ¼
X
kσ

ψ†
σðqÞHtðqÞψσðqÞ: ðA2Þ

Here, ψσðqÞ ¼ ½fψA;σðqÞg; fψB;σðqÞg�T , with ψA=B;σðqÞ¼
½dA=B;1;σðqÞ; dA=B;2;σðqÞ; dA=B;3;σðqÞ;dA=B;4;σðqÞ;dA=B;5;σðqÞ�
and q ¼ ðqx; qyÞ, and it is defined in two-Fe BZ. The
dimension of HtðqÞ is 10 × 10 because of the two-Fe unit
cell. Theoretically, the effective one-Fe unit-cell picture is
usually used for simplicity. The two-Fe unit-cell picture and
the one-Fe unit-cell picture are connected through a unitary
transformation. It is easy to check that

UHtðqÞU† ¼
�
AðkÞ 0

0 Aðk0Þ

�
: ðA3Þ

Here, k0 ¼ kþQ with Q ¼ ðπ; πÞ, and k is defined in
one-Fe BZ.

U ¼
�
UA UB

UA −UB

�
ðA4Þ

with

UA ¼
ffiffiffi
2

p

2

2
6666664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3
7777775
;

UB ¼
ffiffiffi
2

p

2

2
6666664

1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

3
7777775
: ðA5Þ
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AðkÞ is the general one-Fe unit-cell TB Hamiltonian in the
basis ϕσðkÞ ¼ ½d1;σðkÞ; d2;σðkÞ; d3;σðkÞ; d4;σðkÞ; d5;σðkÞ�T .
The connection between the two bases is

d1=2;σðkÞ ¼
ffiffiffi
2

p

2
½dA;1=2;σðqÞ þ dB;1=2;σðqÞ�

d1=2;σðk0Þ ¼
ffiffiffi
2

p

2
½dA;1=2;σðqÞ − dB;1=2;σðqÞ�

d3=4=5;σðkÞ ¼
ffiffiffi
2

p

2
½dA;3=4=5;σðqÞ − dB;3=4=5;σðqÞ�

d3=4=5;σðk0Þ ¼
ffiffiffi
2

p

2
½dA;3=4=5;σðqÞ þ dB;3=4=5;σðqÞ�: ðA6Þ

The nonzero terms in AðkÞ are listed as follows:

A11ðkÞ¼ ϵ1þ2t11x coskxþ2t11y coskyþ4t11xy coskxcosky

þ2t11xx cos2kxþ2t11yy cos2kyþ4t11xxycos2kx cosky

þ4t11xyycoskx cos2kyþ4t11xxyy cos2kxcos2ky

A22ðkÞ¼ ϵ1þ2t11y coskxþ2t11x coskyþ4t11xy coskxcosky

þ2t11yy cos2kxþ2t11xx cos2kyþ4t11yyxcos2kx cosky

þ4t11xxycoskx cos2kyþ4t11xxyy cos2kxcos2ky

A33ðkÞ¼ ϵ3þ2t33x ðcoskxþcoskyÞþ4t33xy coskx cosky

A44ðkÞ¼ ϵ4þ2t44x ðcoskxþcoskyÞþ4t44xy coskx cosky

þ4t44xxyðcos2kx coskyþcoskx cos2kyÞ
þ4t44xxyycos2kx cos2ky

A55ðkÞ¼ ϵ5

A12ðkÞ¼−4t12xy sinkx sinky
A13=23ðkÞ¼�2it13x sinky=x�4it13xy sinky=xcoskx=y

A14=24ðkÞ¼−2it14x sinkx=yþ4it14xy sinkx=y cosky=x

A15=25ðkÞ¼2it15x sinky=xþ4it15xy sinky=xcoskx=y

A35ðkÞ¼2t35x ðcoskx−coskyÞ
A45ðkÞ¼−4t45xy sinkx sinky:

The on-site orbital energy is ϵ1 ¼ ϵ2 ¼ 0.02, ϵ3 ¼−0.539, ϵ4 ¼ 0.014, ϵ5 ¼ −0.581. The hopping parame-
ters are shown in Tables I and II [45].

APPENDIX B: THE INFLUENCE OF LATTICE
DISTORTION TO A HOPPING PARAMETER

In this section, we present a detailed discussion about the
influence of the lattice distortion to the hopping parameters.
The overlap integrals between different orbitals can be
calculated with the Slater-Koster method [22]. In iron-
based materials, the band structures around the Fermi
surface mainly have dxz, dyz, and dxy characters.
Furthermore, we can find that the difference of band
structure between the bulk and single-layer cases is mainly
affected by the change of the hoppings between these three
orbitals. Now, we focus on the three orbitals.
Consider the Fe-Se trilayer structure shown in Fig. 6(a).

The direction cosines for two centers with coordinates
R1ðx1; y1; z1Þ and R2ðx2; y2; z2Þ are defined as l ¼
cos θx ¼ ðx2 − x1Þ=jR2 −R1j, m ¼ cos θy ¼ ðy2 − y1Þ=
jR2 −R1j, and n ¼ cos θz ¼ ðz2 − z1Þ=jR2 −R1j. The
overlap integrals are listed in Table III.
The effective Fe-Fe hoppings include two parts: the

direct hoppings from the direct overlap integrals of d
orbitals and the indirect hoppings through the bridge of
p orbitals. In order to consider the indirect Fe-Fe hoppings
through the p orbitals, we must first consider the Fe-Se
hoppings. Define the ratio x ¼ h=k, and then the Fe-Se
hoppings can be parametrized as

TABLE I. Intra-orbital hopping parameters

tmn
i mn ¼ 11 mn ¼ 33 mn ¼ 44 mn ¼ 55

i ¼ x −0.08 0.412 0.063 0
i ¼ y −0.311 0 0 0
i ¼ xy 0.232 −0.066 0.086 0
i ¼ xx 0.009 0 0 0
i ¼ yy −0.045 0 0 0
i ¼ xxy −0.016 0 −0.017 0
i ¼ xyy 0.019 0 0 0
i ¼ xxyy 0.02 0 −0.028 0

TABLE II. Interorbital hopping parameters

tmn
i mn¼ 12 mn¼ 13 mn¼ 14 mn¼ 14 mn¼ 35 mn¼ 45

i ¼ x 0 0.3 0.305 −0.18 0.338 0
i ¼ xy 0.099 −0.089 −0.056 0.146 0 −0.109

FIG. 6. The lattice structure of the FeSe trilayer is shown in
(a). k is the nearest-neighbor Fe-Fe distance. h is the distance
between Se and Fe layers. s is the nearest-neighbor Fe-Se
distance. Panel (b) is the top view of (a), and the Fe and Se
atoms are numbered.
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jtx;xzj ¼ jty;yzj ¼
ffiffiffi
3

p

4
xf3ðxÞEðpdσÞ½sðxÞ�

þ
�
xfðxÞ − 1

2
xf3ðxÞ

�
EðpdπÞ½sðxÞ�; ðB1Þ

jtx;yzj ¼ jty;xzj ¼
ffiffiffi
3

p

4
xf3ðxÞEðpdσÞ½sðxÞ�

−
1

2
xf3ðxÞEðpdπÞ½sðxÞ�; ðB2Þ

jtx=y;xyj ¼
ffiffiffi
3

p

8
f3ðxÞEðpdσÞ½sðxÞ�

þ
�
1

2
fðxÞ − 1

4
f3ðxÞ

�
EðpdπÞ½sðxÞ�; ðB3Þ

jtz;xz=yzj ¼
ffiffiffi
3

p

2
x2f3ðxÞEðpdσÞ½sðxÞ�

þ ½fðxÞ − 2x2f3ðxÞ�EðpdπÞ½sðxÞ�; ðB4Þ

jtz;xyj ¼
ffiffiffi
3

p

2
x2f3ðxÞEðpdσÞ½sðxÞ� − x2f3ðxÞEðpdπÞ½sðxÞ�:

ðB5Þ

Here,

fðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ x2

q ðB6Þ

and sðxÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ þ x2

p
is the nearest Fe-Se distance; we

use Eðpdσ=πÞ½sðxÞ� to denote the energy of pdσ=π bonds.
The direct Fe-Fe hoppings are straightforward, and both the
nearest and next-nearest ones have three types, namely,
Eðddσ=π=δÞðkÞ and Eðddσ=π=δÞð

ffiffiffi
2

p
kÞ.

jtðxÞxz;xzj ¼ jtðyÞyz;yzj ¼ EðddπÞ½k�; ðB7Þ

jtðyÞxz;xzj ¼ jtðxÞyz;yzj ¼ EðddδÞ½k�; ðB8Þ

jtxy;xyj ¼ EðddπÞ½k�; ðB9Þ

jt0xz;xzj ¼ jt0yz;yzj ¼ EðddπÞ½
ffiffiffi
2

p
k� þ EðddδÞ½

ffiffiffi
2

p
k�; ðB10Þ

jt0xy;xyj ¼ 3EðddσÞ½
ffiffiffi
2

p
k� − 2EðddπÞ½

ffiffiffi
2

p
k� þ EðddδÞ½

ffiffiffi
2

p
k�;
ðB11Þ

jt0xz;yzj ¼ EðddπÞ½
ffiffiffi
2

p
k� − EðddδÞ½

ffiffiffi
2

p
k�: ðB12Þ

In order to calculate the effective Fe-Fe hoppings, we
consider a Fe-Se cluster that involves nine Se and four Fe; it
is shown in Fig. 6(b). The coupling patterns between d
orbitals and p orbitals are shown in Figs. 7–9.
According to Figs. 7–9, the new orthonormal wave

function for the local d orbitals can be constructed as
follows:

FIG. 7. The pattern of dxz − p couplings. Here, a ¼ jty;xzj,
b ¼ jtx;xzj, c ¼ jtz;xzj.

FIG. 8. The pattern of dyz − p couplings. Here, a ¼ jty;xzj,
b ¼ jtx;xzj, c ¼ jtz;xzj.

FIG. 9. The pattern of dxy − p couplings. Here, f ¼ jtx;xyj.

TABLE III. Overlap integrals for p and d orbitals.

Ex;yz

ffiffiffi
3

p
lmnðpdσÞ − 2lmnðpdπÞ

Ex;xz

ffiffiffi
3

p
l2nðpdσÞ − nð1 − 2l2ÞðpdπÞ

Ey;yz

ffiffiffi
3

p
m2nðpdσÞ − nð1 − 2m2ÞðpdπÞ

Ex;xy

ffiffiffi
3

p
l2mðpdσÞ þmð1 − 2l2ÞðpdπÞ

Ez;xz

ffiffiffi
3

p
n2lðpdσÞ þ lð1 − 2n2ÞðpdπÞ

Ez;yz

ffiffiffi
3

p
n2mðpdσÞ þmð1 − 2n2ÞðpdπÞ

Ez;xy

ffiffiffi
3

p
lmnðpdσÞ − 2lmnðpdπÞ

Exz−xz 3l2n2ðddσÞ þ ðl2 þ n2 − 4l2n2ÞðddπÞ
þðm2 þ l2n2ÞðddδÞ

Exz−yz 3lmn2ðddσÞ þ lmð1 − 4n2Þ½ðddπÞ − ðddδÞ�
Eyz−yz 3m2n2ðddσÞ þ ðm2 þ n2 − 4m2n2ÞðddπÞ

þðl2 þm2n2ÞðddδÞ
Exy−xy 3l2m2ðddσÞ þ ðl2 þm2 − 4l2m2ÞðddπÞ

þðn2 þ l2m2ÞðddδÞ
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jd1;xzi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α21 þ 4β21 þ 4γ21
p × fjd1;xzi − α1jp1;x − p2;xi − β1jp1;y þ p2;yi − γ1jp1;z þ p2;zi

− α1jp3;x − p4;xi − β1jp3;y þ p4;yi þ γ1jp3;z þ p4;zig

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α21 þ 4β21 þ 4γ21

p × fjd1;xzi − α1jp1;x − p4;xi − β1jp1;y þ p4;yi − γ1jp1;z − p4;zi

− α1jp3;x − p2;xi − β1jp3;y þ p2;yi þ γ1jp3;z − p2;zig; ðB13Þ

jd2;xzi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α21 þ 4β21 þ 4γ21
p × fjd2;xzi − α1jp1;x − p2;xi þ β1jp1;y þ p2;yi þ γ1jp1;z þ p2;zi

− α1jp5;x − p6;xi þ β1jp5;y þ p6;yi − γ1jp5;z þ p6;zig; ðB14Þ

jd3;xzi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α21 þ 4β21 þ 4γ21
p × fjd3;xzi − α1jp1;x − p4;xi þ β1jp1;y þ p4;yi − γ1jp1;z − p4;zi

− α1jp7;x − p8;xi þ β1jp7;y þ p8;yi þ γ1jp7;z − p8;zig; ðB15Þ

jd1;yzi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α21 þ 4β21 þ 4γ21
p × fjd1;yzi − β1jp1;x þ p2;xi − α1jp1;y − p2;yi − γ1jp1;z − p2;zi

− β1jp3;x þ p4;xi − α1jp3;y − p4;yi þ γ1jp3;z − p4;zig

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α21 þ 4β21 þ 4γ21

p × fjd1;yzi − β1jp1;x þ p4;xi − α1jp1;y − p4;yi − γ1jp1;z þ p4;zi

− β1jp3;x þ p2;xi − α1jp3;y − p2;yi þ γ1jp3;z þ p2;zi; ðB16Þ

jd2;yzi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α21 þ 4β21 þ 4γ21
p × fjd2;yzi þ β1jp1;x þ p2;xi − α1jp1;y − p2;yi − γ1jp1;z − p2;zi

þ β1jp5;x þ p6;xi − α1jp5;y − p6;yi þ γ1jp5;z − p6;zig; ðB17Þ

jd3;yzi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α21 þ 4β21 þ 4γ21
p × fjd3;yzi þ β1jp1;x þ p4;xi − α1jp1;y − p4;yi þ γ1jp1;z þ p4;zi

þ β1jp7;x þ p8;xi − α1jp7;y − p8;yi − γ1jp7;z − p8;zig; ðB18Þ

jd1;xyi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8α24 þ 4γ24
p × fjd1;xyi þ α4jp1;x − p2;xi þ α4jp1;y þ p2;yi − γ4jp1;z þ p2;zi

− α4jp3;x − p4;xi − α4jp3;y þ p4;yi − γ4jp3;z þ p4;zig

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α24 þ 4γ24

p × fjd1;xyi þ α4jp1;x þ p4;xi þ α4jp1;y − p4;yi − γ4jp1;z þ p4;zi

− α4jp3;x þ p2;xi − α4jp3;y − p2;yi − γ4jp3;z þ p2;zig; ðB19Þ

jd2;xyi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8α24 þ 4γ24
p × fjd2;xyi þ α4jp1;x − p2;xi − α4jp1;y þ p2;yi þ γ4jp1;z þ p2;zi

− α4jp5;x − p6;xi þ α4jp5;y þ p6;yi þ γ4jp5;z þ p6;zig; ðB20Þ

jd3;xyi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8α24 þ 4γ24
p × fjd3;xyi þ α4jp1;x þ p4;xi − α4jp1;y − p4;yi þ γ4jp1;z þ p4;zi

− α4jp7;x þ p8;xi þ α4jp7;y − p8;yi þ γ4jp7;z þ p8;zig; ðB21Þ
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where

α1 ¼
hp1;x − p2;xjHjd1;xz þ d2;xzi

4ðϵpx
− ϵdxzÞ

¼
���� tx;xz
ϵpx

− ϵdxz

����; ðB22Þ

β1 ¼
hp1;y þ p2;yjHjd1;xz − d1;xzi

4ðϵpy
− ϵdxzÞ

¼
���� ty;xz
ϵpy

− ϵdxz

����; ðB23Þ

γ1 ¼
hp1;z þ p2;zjHjd1;xz − d2;xzi

4ðϵpz
− ϵdxzÞ

¼
���� tz;xz
ϵpz

− ϵdxz

����; ðB24Þ

α4 ¼
−hp1;x − p2;xjHjd1;xy − d2;xyi

4ðϵpx
− ϵdxyÞ

¼
���� tx;xy
ϵpx

− ϵdxy

����; ðB25Þ

γ4 ¼
hp1;z þ p2;zjHjd1;xz − d2;xzi

4ðϵpz
− ϵdxyÞ

¼
���� tz;xy
ϵpz

− ϵdxy

����: ðB26Þ

Note that the αi, βi, and γi in Eqs. (B22)–(B26) are less
than 1; we only keep the terms to the first order. The
effective Fe-Fe hoppings can be obtained as follows.
The effective nearest-neighbor dxz − dxz hopping along

the ~x direction is

t11x ¼ hd1;xzj0Hjd2;xzi0

∼
1

1þ 4α21 þ 4β21 þ 4γ21

× ðtðxÞxz;xz þ 4α1jtx;xzj − 4β1jty;xzj þ 4γ1jtz;xzjÞ: ðB27Þ

The effective nearest-neighbor dxz − dxz hopping along
the ~y direction is

t11y ¼ hd1;xzj0Hjd3;xzi0

∼
1

1þ 4α21 þ 4β21 þ 4γ21

× ðtðyÞxz;xz þ 4α1jtx;xzj − 4β1jty;xzj − 4γ1jtz;xzjÞ: ðB28Þ

The effective next-nearest-neighbor dxz − dxz hopping is

t11xy ¼ hd2;xzj0Hjd3;xzi0

∼
1

1þ 4α21 þ 4β21 þ 4γ21

× ðt0xz;xz þ 2α1jtx;xzj þ 2β1jty;xzj − 2γ1jtz;xzjÞ: ðB29Þ

The effective nearest-neighbor dxy − dxy hopping is

t44x ¼ hd1;xyj0Hjd2;xyi0

∼
1

1þ 8α24 þ 8γ24
ð−txy;xy − 4γ4jtz;xyjÞ: ðB30Þ

The effective next-nearest-neighbor dxy − dxy hopping is

t44xy ¼ hd2;xyj0Hjd3;xyi0

∼
1

1þ 8α24 þ 8γ24
ðt0xy;xy − 4α4jtx;xyj þ 2γ4jtz;xyjÞ: ðB31Þ

The effective nearest-neighbor dxz − dxy hopping along
the ~x direction is

t14x ¼ hd1;xzj0Hjd2;xyi0

∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α21 þ 4β21 þ 4γ21
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8α24 þ 4γ24
p

× ½2ðβ1 − α1Þjtx;xyj− 2γ1jtz;xyj þ 2α4ð−jtx;xzj þ jty;xzjÞ
− 2γ4jtz;xzj�: ðB32Þ

Equations (B27)–(B32) can be used to qualitatively
calculate the hopping parameters, and we use them to
study the changes of hoppings due to the lattice distortion.
In order to calculate the above effective d − d hoppings, we
must know the energy of the ðpdσ=πÞ and ðddσ=π=δÞ
bonds. The generic forms of Eðp=ddσ=π=δÞ½R� [46] can be
approximatively expressed as

Eðαα0μÞ½R� ¼ ½aαα0μ þ bαα0μRþ cαα0μR2� expð−d2αα0μRÞFðRÞ:
ðB33Þ

Here, aαα0μ, bαα0μ, cαα0μ, and dαα0μ are fitting parameters; α,
α0 label p or d orbitals; μ labels σ, π, or δ bonds; R is the
distance between two atoms; FðRÞ is the cutoff function;
and FðRÞ ¼ 1=f1þ exp½ðR − R0Þ=L0�g when R < R0 and
FðRÞ ¼ 0 when R > R0. We set R0 ¼ 14 in Bohr units and
L0 ¼ 0.5. Another point is that all the iron-based materials
have the same Fe-Se(As) trilayer structure except for the
slightly difference of lattice constant. Hence, it is natural
to assume that the effect of lattice distortion for different
materials follows the same rule. Here, we take LaOFeAs as
an example. In the bulk case, we set kb ¼ 5.329 Bohr and
xb ¼ 0.4838. For the single-layer case, we set ks ¼ 5.6551
in order to keep the same distortion ratio of 6.12%
compared with the FeSe case. The on-site orbital energy
is set as ϵpx=y=z

¼ 0.18566, ϵdxz=yz ¼ 0.51108, ϵdxy ¼
0.54617, ϵdx2−y2 ¼ 0.54548, and ϵdz2 ¼ 0.5513. The energy

TABLE IV. The values of the fitting parameters.

αα0μ a b c d

dpσ 118.1935 −28.6982 1.2701 1
dpπ 513.051 −158.0415 9.6802 1
ddσ 120.9216 −46.1969 4.2375 1
ddπ −274.1753 93.9890 −7.788 1
ddδ −70.9924 21.0086 −1.3686 1
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is in Rydberg units. The fitting parameters aαα0μ, bαα0μ,
cαα0μ, and dαα0μ are listed in Table IV.
The effective hoppings in Eqs. (B27)–(B32) can be

calculated with the above parameters. The evolution of the
hopping difference between the single-layer case and the
bulk case as a function of x is shown in Fig. 10. The bulk
case has xb ¼ 0.4838. For the single-layer case, x is

generally smaller than xb and usually is located at the
shaded rectangle region. We can find that the t11x are
strongly affected by the lattice distortion, and other hop-
pings are weakly adjusted. This is consistent with the
artificial parameter used in our paper. In conclusion,
we give a clear picture about the electronic structure of
single-layer FeSe.

APPENDIX C: EFFECTIVE HAMILTONIAN
AROUND M POINTS

In this section, we present a detailed derivation about
the effective Hamiltonian around M points. The total
Hamiltonian is

H ¼ Ht þHso þHs: ðC1Þ

In momentum space,

H ¼
X
~k

Ψ̄†ð~kÞH̄ð~kÞΨ̄ð~kÞ: ðC2Þ

Here, we set the basis as Ψ̄ð~kÞ ¼ ½ϕ̄↑ðkÞ; ϕ̄↑ðk0Þ; ϕ̄↓ðkÞ;
ϕ̄↓ðk0Þ�t with ϕ̄σð~kÞ ¼ ½d1;σð~kÞ; d2;σð~kÞ; d3;σð~kÞ; d4;σð~kÞ;
d5;σð~kÞ�. The Hamiltonian kernel H̄ð~kÞ has the form

H̄ð~kÞ ¼

2
666664

AðkÞ þHso1ðkÞ HsðkÞ 0 Hso2ðkÞ
H†

sðkÞ AðkÞ þHso1ðkÞ Hso2ðk0Þ 0

0 H†
so2ðk0Þ Aðk0Þ −Hso1ðk0Þ HsðkÞ

H†
so2ðkÞ 0 HsðkÞ Aðk0Þ −Hso1ðk0Þ

3
777775
: ðC3Þ

The three orbital matrices lx;y;z under the basis fjxzi; jyzi;
jxyig are

lz ¼

2
64
0 −i 0

i 0 0

0 0 0

3
75; lx ¼

2
64

0 0 i

0 0 0

−i 0 0

3
75;

ly ¼

2
64
0 0 0

0 0 i

0 −i 0

3
75: ðC4Þ

Then, we can get the explicit forms for Hsð~kÞ Hso1ð~kÞ and
Hso2ð~kÞ as

Hsð~kÞ ¼

2
6666664

ξs 0 0 0 0

0 ξs 0 0 0

0 0 0 0 0

0 0 0 ξs 0

0 0 0 0 0

3
7777775
; ðC5Þ

Hso1ð~kÞ ¼

2
6666664

0 −iλ⊥ð~kÞ 0 0 0

iλ⊥ð~kÞ 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
; ðC6Þ

Hso2ð~kÞ ¼

2
6666664

0 0 0 iλ∥;xzð~kÞ 0

0 0 0 λ∥;yzð~kÞ 0

0 0 0 0 0

−iλ∥;xzð~kÞ −λ∥;yzð~kÞ 0 0 0

0 0 0 0 0

3
7777775
:

ðC7Þ

Now, we define the new basis for dxz;σð~kÞ and dyz;σð~kÞ
orbitals according to the eigenstates of azimuthal and
magnetic quantum numbers: l ¼ 2; m ¼ �1. Namely,

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

E

x

11| |xt
11| |yt
11| |xyt
44| |xt
44| |xyt
14| |xt

FIG. 10. The changes of hoppings as a function as x. Energy is
in Rydberg units.
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dð2;1Þ;σð~kÞ ¼ − 1ffiffiffi
2

p ½d1;σð~kÞ þ id2;σð~kÞ�

dð2;−1Þ;σð~kÞ ¼
1ffiffiffi
2

p ½d1;σð~kÞ − id2;σð~kÞ�: ðC8Þ

Then, in this new basis, Ψð~kÞ ¼ ½ϕ↑ðkÞ;ϕ↑ðk0Þ;ϕ↓ðkÞ;
ϕ↓ðk0Þ�t with ϕσð~kÞ ¼ ½dð2;1Þ;σð~kÞ; dð2;−1Þ;σð~kÞ; d3;σð~kÞ;

d4;σð~kÞ; d5;σð~kÞ�, the total Hamiltonian can be rewritten
as follows:

H ¼
X
~k

Ψ†ð~kÞHð~kÞΨð~kÞ: ðC9Þ

Here,

Hð~kÞ ¼

2
666664

~AðkÞ þ ~Hso1ðkÞ ~HsðkÞ 0 ~Hso2ðkÞ
~H†
sðkÞ ~AðkÞ þ ~Hso1ðkÞ ~Hso2ðk0Þ 0

0 ~H†
so2ðk0Þ ~Aðk0Þ − ~Hso1ðk0Þ ~HsðkÞ

~H†
so2ðkÞ 0 ~HsðkÞ ~Aðk0Þ − ~Hso1ðk0Þ

3
777775
; ðC10Þ

~Að~kÞ ¼

2
666666664

~A11ð~kÞ ~A12ð~kÞ − A13ð~kÞþiA23ð~kÞffiffi
2

p − A14ð~kÞþiA24ð~kÞffiffi
2

p − A15ð~kÞþiA25ð~kÞffiffi
2

p

~A22ð~kÞ A13ð~kÞ−iA23ð~kÞffiffi
2

p A14ð~kÞ−iA24ð~kÞffiffi
2

p A15ð~kÞ−iA25ð~kÞffiffi
2

p

A33ð~kÞ A34ð~kÞ A35ð~kÞ
A44ð~kÞ A45ð~kÞ

A55ð~kÞ

3
777777775
; ðC11Þ

with

~A11=22ð~kÞ ¼
A11ð~kÞ þ A22ð~kÞ

2
∓i

A12ð~kÞ − A21ð~kÞ
2

~A12ð~kÞ ¼
−A11ð~kÞ þ A22ð~kÞ

2
− i

A12ð~kÞ þ A21ð~kÞ
2

;

ðC12Þ

~Hsð~kÞ ¼

2
6666664

ξs 0 0 0 0

0 ξs 0 0 0

0 0 0 0 0

0 0 0 ξs 0

0 0 0 0 0

3
7777775
; ðC13Þ

~Hso1ð~kÞ ¼

2
6666664

−λ⊥ð~kÞ 0 0 0 0

0 λ⊥ð~kÞ 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
; ðC14Þ

~Hso2ð~kÞ ¼

2
6666664

0 0 0 −iλ∥;þð~kÞ 0

0 0 0 iλ∥;−ð~kÞ 0

0 0 0 0 0

iλ∥;−ð~kÞ −iλ∥;þð~kÞ 0 0 0

0 0 0 0 0

3
7777775
;

ðC15Þ

where

λ∥;þð~kÞ ¼
½λ∥;xzð~kÞ þ λ∥;yzð~kÞ�ffiffiffi

2
p

λ∥;−ð~kÞ ¼
½λ∥;xzð~kÞ − λ∥;yzð~kÞ�ffiffiffi

2
p :

From Eq. (C14), we find that the dð2;1Þ;σð~kÞ, dð2;−1Þ;σð~kÞ
can be split by the nonzero λ⊥ð~kÞ. If the splitting between
them is large enough, we can only keep dð2;−1=1Þ;↑=↓ð~kÞ for
λ⊥ð~kÞ > 0 and dð2;1=−1Þ;↑=↓ð~kÞ for λ⊥ð~kÞ < 0 around the M
point. Hence, we get two kinds of effective Hamiltonians
around the M point, λ⊥ð~kÞ > 0 and λ⊥ð~kÞ < 0.
We set the effective basis Ψeffð~kÞ ¼ ½ϕeff;↑ðkÞ;

ϕeff;↑ðk0Þ;ϕeff;↓ðkÞ;ϕeff;↓ðk0Þ�t with ϕσð~kÞ ¼ ½dxy;σð~kÞ;
dð2;∓ð−1Þσ ;σð~kÞ�, and σ ¼ ∓ for spin ↑ or ↓. The effective
Hamiltonian in this basis is
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Heff ¼
X
~k

Ψ†
effð~kÞHeffð~kÞΨeffð~kÞ ðC16Þ

with

Heffð~kÞ ¼
�
Heff;11ð~kÞ Heff;12ð~kÞ
H†

eff;12ð~kÞ Heff;22ð~kÞ

�
; ðC17Þ

where

Heff;11 ¼

2
6666664

A44ðkÞ � A41ðkÞ�iA42ðkÞffiffi
2

p ξs 0

A11ðkÞþA22ðkÞ
2

þ jλ⊥ðkÞj 0 ξs

A44ðk0Þ � A41ðk0Þ�iA42ðk0Þffiffi
2

p

A11ðk0ÞþA22ðk0Þ
2

þ jλ⊥ðk0Þj

3
7777775
; ðC18Þ

Heff;22 ¼

2
6666664

A44ðkÞ ∓ A41ðkÞ∓iA42ðkÞffiffi
2

p ξs 0

A11ðkÞþA22ðkÞ
2

þ jλ⊥ðkÞj 0 ξs

A44ðk0Þ ∓ A41ðk0Þ∓iA42ðk0Þffiffi
2

p

A11ðk0ÞþA22ðk0Þ
2

þ jλ⊥ðkÞj

3
7777775
; ðC19Þ

Heff;12ð~kÞ ¼

2
666666664

0 0 0 �i ½λ∥;xzðkÞ∓λ∥;yzðkÞ�ffiffi
2

p

0 0 �i ½λ∥;xzðkÞ∓λ∥;yzðkÞ�ffiffi
2

p 0

0 �i ½λ∥;xzðk
0Þ∓λ∥;yzðk0Þ�ffiffi

2
p 0 0

�i ½λ∥;xzðk
0Þ∓λ∥;yzðk0Þ�ffiffi

2
p 0 0 0

3
777777775
: ðC20Þ

When all the parity-mixed terms are zero, in the basis
[dxy;↑ð~kÞ; dð2;∓1Þ;↑ð~kÞ; dxy;↓ð~kÞ; dð2;�1Þ;↓ð~kÞ], we get the
effective Hamiltonian around the M point as

Heffð~kÞ ¼

2
666664

A44ð~kÞ h12ð~kÞ 0 0

h22ð~kÞ 0 0

A44ð~kÞ h�12ð~kÞ
h22ð~kÞ

3
777775
;

ðC21Þ

with
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1
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FIG. 11. Panels (a) and (b) show the band inversion that occurs
around M point from the normal phase (a) with λo⊥ ¼ 0.0,
λnn⊥ ¼ 0.0, λo∥ ¼ 0.0, and ξs ¼ 0, to a topological phase with λo⊥ ¼
0.5 , λnn⊥ ¼ −0.12, λo∥ ¼ 0.0, and ξs ¼ 0. Here, we show the
parity-even part. The parity-odd part has a similar picture. (c) The
phase diagram as a function of λ⊥ðπ; 0Þ, λo∥, and ξs for
λ⊥ðπ; 0Þ < 0. Here, ST and N label the strong topological phase
and the normal trivial phase.
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1
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�
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1

2

�
A44ð~kÞ − 1

2
½A11ð~kÞ þ A22ð~kÞ� − jλ⊥ð~kÞj

�

ε12ð~kÞ ¼
ffiffiffi
2

p
t14x sin ~ky; ε13ð~kÞ ¼ ∓ ffiffiffi

2
p

t14x sin ~kx;

ðC22Þ

when λ⊥ðkÞ > 0 and all the parity-mixed terms are zero.
We consider the effective Hamiltonian shown in Eq. (C21);
the picture of the band inversion induced by the spin-orbital
coupling is shown in Figs. 11(a) and 11(b).
When λ⊥ðkÞ < 0 and all the parity-mixed terms are

nonzero, we consider the effective Hamiltonian Eq. (C16);
the spectrum is

EðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε212ðkÞ þ ε213ðkÞ þ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε21ðkÞ þ 2jλo∥j2

q
� ξs

ir
:

ðC23Þ
The phase boundary is determined by the condition

ε21ðkÞ þ 2jλo∥j2 ¼ ξ2s : ðC24Þ

According to Eq. (C24), we plot the phase diagram that is
shown in Fig. 11(c).
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