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We propose a new class of tensor-network states, which we name projected entangled simplex states
(PESS), for studying the ground-state properties of quantum lattice models. These states extend the pair-
correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the
simplex solid states, and they provide an efficient trial wave function that satisfies the area law of
entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based
on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying
this method to the spin-1=2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate
and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated
for this quantity.
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I. INTRODUCTION

The theory of tensor-network states is evolving rapidly
into an interdisciplinary field involving condensed matter
physics, quantum information theory, renormalization
group theory, and even quantum gravity. From its initial
proposals [1–3], through the development of representa-
tions and techniques [4–12], it has become increasingly
popular in the simulation of both classical models
[3,7,11,13] and strongly correlated quantum systems
[8–10,14–16], providing deep insight into the physical
properties of quantum many-body states. In one dimension,
the tensor-network state is known as a matrix-product state
(MPS) [17], and it is also the wave function generated by
the density-matrix-renormalization-group (DMRG) algo-
rithm [18]. A MPS may be viewed as a trial wave function
arising from virtual entangled pairs formed between two
nearest-neighbor sites of a lattice. Thus, it yields a local
description of quantum many-body states based on their
entanglement structure. A typical example of a MPS is the
S ¼ 1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state [19],
which provides a prototype framework for understanding
the physics of the Haldane excitation gap in integer
quantum spin chains.
Projected entangled pair states (PEPS) constitute a

natural generalization of MPS to two and higher
dimensions [4]. This generalization, motivated by

two-dimensional AKLT states [19], is obtained by distrib-
uting virtual maximally entangled states between any two
nearest-neighbor sites. It leads to a faithful representation
of the many-body wave function of the ground state.
Crucially, PEPS capture the boundary area law obeyed
by the entanglement entropy, which is believed to be the
most important ingredient causing quantum systems to
behave differently from classical ones [20]. It is precisely
the existence of entanglement that is responsible for such
exotic phenomena as quantum phase transitions and
topological quantum order. Furthermore, PEPS allow a
many-body ground-state wave function, which contains
exponentially many degrees of freedom, to be calculated
approximately but accurately on a polynomial time scale.
In particular, for a translationally invariant system, the
understanding of the whole wave function can be mapped
to the problem of studying the properties of just a single, or
a small number of, local tensor(s).
Despite its strengths, the PEPS representation has two

significant disadvantages. It correctly describes the entan-
glement of adjacent basis states, making it a good repre-
sentation of AKLT-type states, and in principle, it can be
used to represent all quantum states satisfying the area law
of entanglement. However, in practical calculations, the
bond dimension must be kept as small as possible to obtain
sufficient accuracy and efficiency, and this means that
PEPS may not always provide a good representation for the
quantum states of some systems. As an example, applying
the PEPS algorithm on a triangular lattice is technically
difficult due to the high coordination number. A local
tensor in PEPS on a triangular lattice contains seven
indices, six from the virtual bond degrees of freedom
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and one from the physical degrees of freedom. Because the
size of each tensor scales as D6, the bond dimension D that
can be handled practically by current techniques is limited
to a very small value (approximately 2–5).
The other disadvantage of PEPS concerns their appli-

cation to frustrated systems. They have been used to
provide a very good variational ansatz for the ground-state
wave function of two-dimensional quantum spin models on
the square and honeycomb lattices [8–10]. However, for the
antiferromagnetic Heisenberg model on the kagome lattice,
we found that the entanglement spectra of the local tensors
for each one of the four bonding directions are always
doubly degenerate, because of the frustrated lattice geom-
etry, when D > 3. This degeneracy causes a numerical
instability that is difficult to correct in the calculation of
expectation values, and in this case, the PEPS ground-state
energy does not converge with increasing D. More gen-
erally, and as we discuss in detail below, it is difficult to use
PEPS to represent a quantum state in which the local
correlation or entanglement among all the basis states
within a cluster (or simplex) containing more than two
lattice sites, for example, the simplex solid state proposed
by Arovas [21], becomes important.
In this work, we solve these problems by introducing a

new class of tensor-network states. We call these projected
entangled simplex states (PESS) because they can be
understood in terms of entangled simplex states of virtual
systems that are locally projected onto the physical basis
states. This class of states arises naturally as the exact
representation of the simplex solid states but is of much
broader use because, similar to PEPS, any state can be
represented by PESS if the virtual dimension is sufficiently
large. PESS extend pair correlations to simplex correlations
and hence constitute a natural generalization of the PEPS
representation.
By the word “simplex” we mean a cluster of lattice sites

that constitute the basic unit, or “building block,” of a two-
or higher-dimensional lattice. As an example, a triangle is a
building block of the kagome lattice (Fig. 1) and can be
taken as a simplex for this lattice. However, one may also
combine a number of simplices to form a larger simplex;
the choice of a simplex is not unique, but it should correctly
reflect the symmetry of the system. If a simplex contains N
lattice sites, we refer to the corresponding PESS as an
N-PESS. If we release the definition of the simplex and
allow it to contain just two neighboring sites, N ¼ 2, the
PESS are precisely the PEPS. Thus, PESS include PEPS as
a subclass. As for PEPS, PESS are defined by introducing a
number of virtual basis states at each node of the lattice. In
addition to the local tensors, defined similarly to the PEPS
framework for projecting out the physical states from the
virtual basis states at each node, the PESS contain a new
type of local tensor, which we call the “entangled simplex
tensor.” This tensor describes the correlation, or entangle-
ment, of virtual particles within the full simplex, and it is

this feature that addresses the frustration problem. An
N-PESS with N ≥ 3 is constructed as a tensor-network
product of these two types of local tensors. Examples of
this process are presented in Sec. II.
Concerning the bond-dimension problem of PEPS, we

provide a brief example using the kagome lattice. The order
(number of tensor indices) of the local tensors in a PEPS
representation is five, and the size of the local tensor is dD4,
where d is the dimension of the physical basis states. For
PESS, as we will illustrate in Sec. II, both types of local
tensors have only three indices, their sizes being dD2 for
the regular projection tensors and D3 for the entangled
simplex tensor. Thus, in practical calculations, a signifi-
cantly larger bond dimension may be studied in the PESS
representation than by PEPS. While this is a major
advantage of PESS, it does not mean a PESS representation
is always more efficient than a PEPS one. For AKLT states,
PEPS remain the most efficient representation, whereas for
simplex solid states, PESS are undoubtedly the most
efficient.
We close this introduction by noting that general insight

into the structure of a quantum wave function may be
obtained from singular value decomposition (SVD). In the
DMRG procedure in one spatial dimension, Schmidt
decomposition of the wave function is a SVD, and the
SVD spectrum is simply the square root of the eigenvalues
of the reduced density matrix. Indeed, at the formal level,
any wave function generated by DMRG can be expressed
as a projected “maximally entangled pair” state; in this
sense, the PEPS description is equivalent to a SVD, and the
physical content of a MPS or PEPS ansatz can be under-
stood more generally from the entanglement structure of
the wave function under SVD. However, the PEPS
approach offers a means of constructing the wave function
using only the local entanglement structure, which greatly
simplifies the construction of the PESS representation in
comparison with a SVD approach. Having said this, SVD
[8–10] and higher-order SVD (HOSVD) [11] of tensors are

FIG. 1 The spin-2 simplex solid state on the kagome lattice
(blue dashed lines). The entangled simplex tensors S form
a honeycomb lattice (black solid lines), and the projection
tensors A are defined on the decorating sites of this honeycomb
lattice.
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fundamental in constructing renormalization schemes for
tensor-network representations of systems in dimensions
higher than one, and they are at the core of the methods
employed in Sec. IV.
This paper is arranged as follows. In Sec. II, in order to

elaborate the physics underlying the PESS, we introduce an
SU(2) simplex solid state of spin S ¼ 2 and explicitly
construct both its PESS representation and the parent
Hamiltonian. In Sec. III, we propose the PESS as a trial
wave function for the ground states of quantum lattice
models. We introduce in Sec. IV a simple update approach
for evaluating the PESS wave function based on the
HOSVD of tensors. By applying this approach to the
spin-1=2 Heisenberg model on the kagome lattice, we
obtain the ground-state energy as a function of the bond
dimensionD for simplices with N ¼ 3, 5, and 9. Section V
contains a summary and discussion.

II. PESS REPRESENTATION OF SIMPLEX
SOLID STATES

The simplex solid state of SU(N) quantum antiferro-
magnets was introduced by Arovas [21]. It extends the
bond singlets of the AKLT state to S ¼ 0 states of N-site
simplices, with N ≥ 3. Each simplex accommodates a
virtual quantum singlet. As with the AKLT states, the
simplex solid states are extinguished by certain local
projection operators. This feature allows one to construct
a many-body Hamiltonian for which the simplex solid
state is an exact ground state, usually with a gap to all
low-energy excitations.
The wave function of simplex solid states can be

expressed as a tensor-network state. This tensor-network
state is the PESS, a result we illustrate by constructing a
simplex solid state and its PESS representation for the
S ¼ 2 Heisenberg model on the kagome lattice. The
kagome geometry is a two-dimensional network of cor-
ner-sharing triangles, each forming a three-site simplex. As
shown in Fig. 1, the simplices form a honeycomb lattice, on
which the kagome lattice is formed by the decorating sites.

A. Spin-2 kagome lattice

A physical S ¼ 2 state can be regarded as a symmetric
superposition of two virtual S ¼ 1 spins. On the kagome
lattice, two neighboring triangles (simplices) share a single
site. As in an AKLT state, we can assign each of the S ¼ 1
spins to one of the simplices associated with this site. There
are then three S ¼ 1 spins on each simplex triangle, and
their product contains a unique spin-singlet state,

1
¯
⊗ 1

¯
⊗ 1

¯
¼ 0

¯
⊕ð3 × 1

¯
Þ⊕ð2 × 2

¯
Þ⊕3

¯
: (1)

This product allows us to define a virtual singlet on the
simplex,

j0; 0i ¼ 1ffiffiffi
6

p
X
sisjsk

εsisjsk jsiijsjijski; (2)

where jsii ðsi ¼ −1; 0; 1Þ is a basis state of the S ¼ 1 spin
at site i and ϵijk is the Levi-Civita antisymmetric tensor.
The many-body state with this virtual singlet on each

simplex is a simplex solid state. Its wave function,
illustrated in Fig. 1, is a PESS, which can be expressed as

jΨi ¼ Trð…SabcAaa0 ½σi�Abb0 ½σj�Acc0 ½σk�…Þ
× j…σiσjσk…i; (3)

where the trace is over all spin configurations and all bond
indices. Sabc is the entangled simplex tensor defined on the
simplex honeycomb lattice. The physical basis states
fσi; σj;…g are defined on the decorating sites of the
honeycomb lattice fi; j;…g (i.e., on the kagome lattice
sites). The Roman letters fa; b;…g denote the virtual bond
states. Because the virtual spins in each simplex triangle
form a spin singlet, Sijk in this case is simply an
antisymmetric Levi-Civita tensor,

Sijk ¼ εijk:

Ai;i0 ½σ1� is a 3 × 3 matrix that maps two virtual S ¼ 1 spins
onto an S ¼ 2 physical spin, and whose components are
given by the Clebsch-Gordan coefficients of the SU(2) Lie
algebra,

A11½2� ¼ A33½−2� ¼ 1;

A12½1� ¼ A21½1� ¼ A23½−1� ¼ A32½−1� ¼ 1ffiffiffi
2

p ;

A13½0� ¼ A31½0� ¼
1ffiffiffi
6

p ;

A22½0� ¼
2ffiffiffi
6

p ;

while all other matrix elements are zero.
For this S ¼ 2 PESS representation, the total spins have

the following possibilities on any given bond of the kagome
lattice,

2
¯
⊗ 2

¯
¼ 0

¯
⊕1

¯
⊕2

¯
⊕3

¯
⊕4

¯
: (4)

The fact that each bond belongs to a simplex means that it
cannot be in the fully symmetric S ¼ 4 state. Thus, this
PESS is an exact ground state of the Hamiltonian

H ¼
X
hiji

P4ðijÞ; (5)

where P4ðijÞ is a projection operator projecting the spin
states on any nearest-neighbor bond hiji onto a state with
total spin S ¼ 4. P4ðijÞ can be expressed using the local
spin operators as
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P4ðijÞ ¼ − 1

280
Tij þ

3

1120
T2
ij − 1

2016
T3
ij þ

1

40320
T4
ij;

where Tij ¼ ðSi þ SjÞ2. We note here that the spin-2 AKLT
state on the kagome lattice is also the ground state of this
Hamiltonian. In fact, it can be shown that the PESS wave
function for this system, defined by Eq. (3), is identical to
the AKLT state [22]. This is a very special property of the
case we have chosen for illustration; in the general case,
there is no AKLT-type representation for most simplex
solid states.
In the PESS of Fig. 1, half of the virtual spins at the three

vertices on any given simplex are quenched to zero. Thus,
the total spin on a simplex cannot exceed S ¼ 3. If we allow
the system to have three-site interactions within each
simplex, then it is straightforward to show that the above
PESS is also the ground state of the Hamiltonian

H ¼
X
α

ðJ4Pα;4 þ J5Pα;5 þ J6Pα;6Þ; (6)

where α represents a simplex triangle, J4, J5, and J6 are
non-negative coupling constants, and Pα;S is the operator
projecting a state at each simplex triangle onto a state with
total spin S. Using the spin operators on the three vertices of
the simplex, ðSα;1;Sα;2;Sα3Þ, Pα;s can be expressed as

Pα;S ¼
X6
n¼1

PS;nðSα;1 þ Sα;2 þ Sα;3Þ2n (7)

where the coefficients PS;n are given in Table I.

B. Generalizations to different spins
and lattice geometries

The preceding discussion for the S ¼ 2 simplex solid
state can be extended to systems of any higher spin,
provided that a unique spin singlet can be formed by the
virtual spins in each simplex [21]. We continue our
illustration of the PESS representation by briefly discussing
its further generalization to describe simplex solids on
different lattices, choosing as examples the triangular
(Fig. 2) and square (Fig. 3) geometries.

For the simplex solid state on the triangular lattice
shown in Fig. 2, the physical spin is formed by three
virtual spins. The simplex solid state is defined on a
honeycomb lattice, which is bipartite, with the simplex
tensors on one of the sublattices and the projection tensors
on the other. If one assumes the virtual spin is still in the
spin-1 representation, then the physical spin will be in an
S ¼ 3 state. The simplex tensor is a D ¼ 3 antisymmetric
Levi-Civita tensor, as in the kagome lattice. The projection
tensor is now a four-indexed quantity, with three virtual
indices and one physical index. It maps three virtual S ¼ 1
states onto a fully symmetric S ¼ 3 physical state. The
parent Hamiltonian for this PESS representation can be
constructed in the same way as for the kagome lattice.
A parent Hamiltonian containing only nearest-neighbor
interaction terms is given by

H ¼
X
hiji

P6ðijÞ; (8)

where P6ðijÞ is the projection operator mapping the two
S ¼ 3 states onto a state with total spin S ¼ 6.
The definition of simplex solid states depends on the

choice of simplex, and on a given lattice, it is not unique.
As an example of this, we show in Fig. 3 that two kinds of
simplex solid state can be defined on the square lattice. If
the lattice is taken as an edge-sharing simplex lattice
[Fig. 3(b)], there are four virtual particles on each lattice

TABLE I. Coefficients for projection operators in Eq. (7).

n P4;n P5;n P6;n

1 − 9
440

1
360

− 1
5544

2 1017
61600

− 173
75600

5
33264

3 − 23
6160

197
362880

− 731
19958400

4 39
123200

− 547
10886400

61
17107200

5 − 23
2217600

41
21772800

− 1
6842880

6 1
8870400

− 1
43545600

1
479001600

FIG. 2 Schematic representation of the simplex solid state on
the triangular lattice (blue dashed lines).

FIG. 3 Schematic representation of two types of simplex solid
state on the square lattice (blue dashed lines).
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site and the simplex solid state so defined is translationally
invariant. The site projection is a five-indexed tensor. If,
instead, we take the square lattice as a vertex-sharing
simplex lattice [Fig. 3(a)], then each site contains only two
virtual particles and the site projection is a three-indexed
tensor. The order of the projection tensors is also lower than
the edge-sharing case. While this simplex solid state is also
translationally invariant, the lattice unit cell is doubled.
The simplex solid state can also be considered in systems

where the generalized “spin” at each site has SU(N)
symmetry or obeys any other Lie algebra. A general
discussion of the SU(N) simplex solid states is given
in Ref. [21]. There is always a PESS representation of
simplex solid states, and it is readily constructed from the
Clebsch-Gordan coefficients or, more generally, from the
decomposition rules of the irreducible representations.

III. PESS AS A VARIATIONAL ANSATZ

As for PEPS, it can be shown that PESS provide a good
approximation for the ground-state wave function, which
satisfies the entanglement area law. Thus, PESS can also be
regarded as a trial wave function for the ground state of a
quantum lattice model. To understand this statement
clearly, we take, for illustration, the spin-1/2 Heisenberg
antiferromagnet on the kagome lattice and demonstrate
how to generate a PESS wave function by imaginary-time
evolution.
The Heisenberg model is defined on any lattice by

H ¼ J
X
hiji

ðSxi Sxj þ Syi S
y
j þ SziS

z
jÞ; (9)

where we take the simplest version in which hiji denotes
the summation only over all nearest neighbors. To perform
the imaginary-time evolution, we divide this Hamiltonian
into a sum of three terms,

H ¼ Hx þHy þHz; (10)

where

Hα ¼ J
X
hiji

Sαi S
α
j (11)

with α ¼ x, y, z. All terms withinHα commute, butHx,Hy,
and Hz do not commute with each other. To evaluate the
partition function, we use the Trotter-Suzuki formula to
decompose the evolution operator e−τH into a product of
three terms,

e−τH ¼ e−τHxe−τHye−τHz þOðτ2Þ; (12)

for small τ. In this approximation, the partition function can
be expressed as

Z ¼ Tre−βH ≈ Trðe−τHÞM
≈ Trðe−τHxe−τHye−τHzÞM; (13)

where β ¼ Mτ.
We define a set of basis states specific to the spin-1=2

case,

jσα;ni ¼ fjσα;nj i; j ¼ 1;…; Lg; (14)

where jσα;0i ¼ jσα;Mi and L is the total number of lattice
sites. Here, jσα;nj i is the local basis state of Sαj ,

Sαj jσα;nj i ¼ σα;nj jσα;nj i; (15)

with eigenvalue σα;nj ¼ �1. By inserting these basis sets
into Eq. (13), we express the partition function in the form

Z ≈
X

fσx;σy;σzg

YM
n¼1

hσx;nje−τHx jσx;nihσx;njσy;ni

× hσy;nje−τHy jσy;nihσy;njσz;ni
× hσz;nje−τHz jσz;nihσz;njσx;n−1i: (16)

The basis sets jσy;ni and jσx;ni are connected by the
transformation matrix hσx;njσy;ni, which is a product of
local transformation matrices at each site,

Ax
σx;n;σy;n ¼ hσx;njσy;ni ¼

Y
j

Ax
j;σx;n;σy;n ; (17)

Ax
j ¼

1

2

�
1þ i 1 − i

1 − i 1þ i

�
. (18)

Similarly, one obtains for the other matrices

Ay
σy;n;σz;n ¼

Y
j

Ay
j;σy;n;σz;n ; (19)

Ay
j ¼

1ffiffiffi
2

p
�
1 −i
1 i

�
(20)

and

Az
σz;n;σx;n−1 ¼

Y
j

Az
j;σz;n;σx;n−1 ; (21)

Az
j ¼

1ffiffiffi
2

p
�
1 1

1 −1
�
: (22)

In Eq. (16), hσα;nje−τHα jσα;ni is the matrix element of the
classical Ising model Hα, which is also the Boltzmann
weight of Hα for a given basis set jσα;ni. As discussed in
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Ref. [10], this quantity can be written as a product of local
tensors,

hσα;nje−τHα jσα;ni ¼
Y
∇ijk

Sασα;ni ;σα;nj ;σα;nk
; (23)

with

Sασi;σj;σk ¼ exp ½−τJðσiσj þ σkσi þ σjσkÞ�:

It is at this point that the lattice geometry enters, the symbol
∇ indicating that the product is taken over all simplices
(triangles) of the kagome lattice.
Now the partition function becomes

Z ≈ TrTM; (24)

where T ¼ TxTyTz is the tensor evolution operator and the
matrix elements of Tα, given by

hσ0jTαjσi ¼
Y
∇ijk

Sασ0i;σ0j;σ0k

Y
j

Aj
σ0j;σj

; (25)

contain both the entangled simplex and projection tensors.
Tα defines a simplex tensor network operator on the
decorated honeycomb lattice, a graphical representation

of which is shown in Fig. 4. Thus, the partition function is
expressed as a product of simplex tensor network operators.
In the limit of zero temperature, β → ∞, the partition

function (or the density matrix) is determined purely by the
largest eigenvalue and eigenvector of the evolution operator
T. The largest eigenvector may be found by the power
method, starting from an arbitrary initial wave function
jΨ0i, which is not orthogonal to this eigenvector. Because
of the simplex network structure of the evolution operators
Tα, it is natural to assume that jΨ0i is a PESS wave
function. When T is applied to jΨ0i, its PESS structure is
retained, and thus, the ground-state wave function can
indeed be expressed using PESS. Of course, at each
projection, or application of Tα to the wave function, the
bond dimension of the PESS is doubled. Thus, in real
calculations, the bond dimension must be truncated to find
an approximate PESS solution for the ground-state wave
function.

IV. SIMPLE UPDATE METHOD FOR PESS
CALCULATIONS

In principle, the PESS wave function can be determined
by using the variational approaches developed for PEPS.
However, the bond dimensions of PESS that can be treated
with these techniques are generally very small. An approxi-
mate but efficient means of determining the PEPS wave
function is the “simple update” method first proposed by
Jiang et al. [8], which is in essence an entanglement mean-
field approach. This method avoids a full calculation of the
tensor environment during the step where the wave function
is updated by imaginary-time evolution, which is usually
the rate-limiting step in the calculation. This procedure
converts a global minimization problem into a local one,
yielding a fast algorithm that allows us to reach large values
of the bond dimension D. It is more effective for gapped
systems and is almost exact on Bethe lattices [6,16]
(a one-dimensional chain can be regarded as the simplest
Bethe lattice). However, the accuracy of the results falls
substantially when the system is close to a quantum critical
point, i.e., where correlations become long-ranged and full
updating of the environment tensor becomes essential [16].
Here, we generalize the simple update method to study

the PESS wave function, by utilizing the HOSVD of
tensors [11,23]. We again take the kagome lattice to
illustrate the method. Figure 5 shows graphical represen-
tations of the 3-PESS, the 5-PESS, and the 9-PESS, which
are the three simplest available PESS wave functions on the
kagome lattice. We stress again that each one takes into
account all the correlations (or entanglement) among the N
spins on the corresponding simplex, described by the
entangled simplex tensor S. In the limit of large D, this
simplex entanglement is treated rigorously. For simplicity,
we describe only the 3-PESS in detail below. It is
straightforward to extend the method to other PESS
representations and to different lattices.

FIG. 4 Graphical representation of simplex tensor operators on
the kagome lattice. (a) Simplex (S) and projection (A) operators.
(b) The tensor Tz specified in Eq. (25)). (c) One evolution step of
the simplex tensor operator T ¼ TxTyTz describing the partition
function (16).
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We write the Hamiltonian in the form

H ¼ H△ þH∇; (26)

where H△ and H∇ are the Hamiltonians defined, respec-
tively, on all upward- and downward-oriented triangular
simplices. As shown in Fig. 5, the 3-PESS is defined on a
honeycomb lattice formed by the simplex triangles. We
assume the ground-state wave function to be translationally
invariant within each sublattice formed by the “up” or
“down” triangle simplices and hence that the simplex
tensors are the same on the same sublattice. The ground-
state wave function may then be expressed as

jΨi ¼ Trð…Sαa0b0c0Aa0a½σi�Ab0b½σj�Ac0c½σk�…Þ
× j…σiσjσk…i; (27)

where α represents the vertex coordinates of the simplex
honeycomb lattice and Sα is the corresponding entangled
simplex tensor. As in Sec. II, the physical basis states
fσi; σj;…g are defined on the kagome lattice sites
fi; j;…g, and the Roman letters fa; b;…g denote the
virtual bond states.

A. HOSVD procedure

As in Sec. III, the ground-state wave function is
determined by applying the imaginary-time evolution
operator exp ð−τHÞ to an arbitrary initial state jΨ0i, and
in the limit τ → ∞, the projected state exp ð−τHÞjΨ0i will
converge to the ground state. This projection cannot be
performed in a single step because the two terms in the
Hamiltonian (26) do not commute with each other. To carry
out the projection, we take a small value for τ and apply the
evolution operator to jΨ0i iteratively over many steps.
In the limit τ → 0, the evolution operator may be decom-
posed approximately into the product of two terms by the
Trotter-Suzuki formula,

e−τH ¼ e−τH△e−τH∇ þOðτ2Þ: (28)

Each projection is then performed in two steps, by applying
expð−τH△Þ and exp ð−τH∇Þ successively to the wave
function.
We first consider the projection with H∇. A schematic

representation of this procedure is shown in Fig. 6. Because
all of the separate terms in H∇ commute with each other,
the action of the projection operator exp ð−τH∇Þ on a wave
function of the form specified by Eq. (27) can be expressed
as a product of local evolution operators defined on each
simplex (down triangle),

e−τH∇ jΨ0i ¼ Trð…Tα∇
aσi;bσj;cσk

Sβ△ade…Þj…σiσjσk…i;

where Tα∇
aσi;bσj;cσk

is a dD × dD × dD tensor defined by

Tα∇
aσi;bσj;cσk

¼
X

σ0iσ
0
jσ

0
ka

0b0c0
hσiσjσkje−τH∇α jσ0iσ0jσ0ki

× Sα∇a0b0c0Aa0a½σ0i�Ab0b½σ0j�Ac0c½σ0k� (29)

and Sβ△ade represents the simplex tensors of the up triangles,
which are renormalized in the next step of the projection. In
Eq. (29), H∇α is the Hamiltonian for the simplex α, and the
local projection operator couples the simplex tensor Sα∇
with the three neighboring A tensors. For notational
simplicity, in the remainder of this section, the superscript
α refers to down triangles and β to up triangles.

FIG. 5 Graphical representations of a 3-PESS, 5-PESS, and
9-PESS on the kagome lattice (blue dashed lines). (a) The
3-PESS is defined on the decorated honeycomb lattice. The
vertical dangling bonds represent the physical degrees of freedom
fσi;…g. Sα is the entangled three-index simplex tensor, and A is
a three-index tensor defined at each physical lattice site. (b) The
5-PESS is defined on the decorated square lattice. The entangled
simplex tensor Sα has five indices, one of which represents
the physical basis states at the nodes of the square lattice
while the other four represent the four virtual bond states
connecting to the neighboring decorated sites; it takes into
account all of the entanglement among these five spins.
A tensor-network ansatz with the same structure as this 5-PESS
has been used in Ref. [24] for studying the ground state of the
SU(N) model on the kagome lattice. (c) The 9-PESS is defined by
taking the three spins on each upward-oriented triangle as one
effective site. The entangled simplex tensor Sα has three indices
and describes all of the entanglement among the nine spins it
connects.
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The next step is HOSVD, to decompose the tensor
Tα
aσi;bσj;cσk

into the product of a renormalized simplex
tensor and three renormalized projection (A) tensors. In
this step, one should also include the renormalization effect
of the environment tensors surrounding Tα (Fig. 6). Here,
we adopt an approximate scheme to simulate the contri-
bution of the environment tensors [8] by introducing a
positive singular bond vector λβ (or λα) of dimension D on
each bond linking the Sα (or Sβ) and A tensors. This
singular bond vector may be determined iteratively by
diagonalizing a density matrix W, which is defined below,
and it measures the entanglement between the correspond-
ing basis states on the two ends of the bond. This motivates
the definition of an environment-renormalized Tα tensor,

T̄α
aσi;bσj;cσk

¼ λβ;aλβ;bλβ;cTα
aσi;bσj;cσk

; (30)

where the three bonds of Tα are weighted by the corre-
sponding singular bond vectors. These additional bond
vectors are included to mimic the renormalization effect
from the environment tensors in an effective entanglement
mean-field approach, which avoids the (computationally
expensive) full calculation of the tensor environment.
To truncate T̄α into a tensor of lower rank, we use a

HOSVD to decompose it according to

T̄α
aσi;bσj;cσk

¼
X
a0b0c0

S̄αa0b0c0Ua0;aσiUb0;bσjUc0;cσk ; (31)

where S̄α is the core tensor of T̄α, which satisfies two key
properties for any given index. We illustrate these using the
second index b:
(1) fully orthogonal:

hS̄α∶;b;∶jS̄α∶;b0;∶i ¼ 0; if b ≠ b0;

where hS̄α∶;b;∶jS̄α∶;b0;∶i is the inner product of the two
subtensors.

(2) pseudodiagonal:

jS̄α∶;b;∶j ≥ jS̄α∶;b0;∶j; if b < b0;

where jS̄α∶;b;∶j is the norm of this subtensor, equal to the
square root of the sum of squares of all elements. These
norms play a role similar to the singular values of the matrix.
In Eq. (31),U is a unitary matrix of dimension dD × dD,

determined by diagonalizing the density matrix

Waσi;aσ
¯ i
¼

X
bcσjσk

T̄α
aσi;bσj;cσk

T̄aσ
¯ i
;bσj;cσkα

¼
X
a0
Ua0;aσiλ

2
α;a0σi

Ua0;aσ
¯ i
;

where λ2α;a0 are the eigenvalues of W, which measure the
weights of the corresponding basis vectorsUa0 in T̄α. With the
aid of theU matrices, we define the renormalized A tensor by

Aa0a½σ� ¼ Ua0;aσλ
−1
β;a;

where the dimension of the a0 bond is truncated toD. Finally,
by keeping the first D states for all three bond directions, we
truncate S̄α to a D ×D ×D tensor Sα. This renormalized Sα

tensor defines the new entangled simplex tensor for its
sublattice.
The projection with exp ð−τH△Þ is performed in the

same way. By repeating this iteration procedure, an
accurate ground-state wave function is obtained after
sufficiently many steps. The truncation error in the tensors
describing the ground-state wave function is reduced
iteratively throughout this renormalization procedure,
and the iteration can be terminated when the truncation
error falls below a desired value.

B. Ground-state energy for the spin-1=2 kagome
antiferromagnet

We have applied the simple update scheme to the PESS
representation of the spin-1=2 Heisenberg antiferromagnet
on the kagome lattice. The ground state of this frustrated
spin system has long been thought to be an ideal candidate
quantum spin liquid, a magnetic system with no sponta-
neous symmetry breaking but showing specific topological
order [25]. This model has been studied by approximate
approaches for several decades [26], with many proposals

FIG. 6 Flowchart for the simple update renormalization scheme
for the wave function using HOSVD. The environment contri-
bution around simplex α is described by a singular bond vector λβ
on each bond connected with the environment; λβ is an approxi-
mate measure of the entanglement on this bond. (a) expð−τH∇αÞ
acts on the tensors in a simplex to produce a new tensor T̄α

defined by Eq. (30)). (b) T̄ is decomposed by HOSVD
[Eq. (31)] into the product of a simplex tensor S̄ and three
unitary matrices U. The dimensions of the thick and thin black
bonds are, respectively, dD and D. (c) The thick bond dimension
is truncated from dD to D, defining the renormalized S and A
tensors.
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for the nature of the ground state. Early numerical calcu-
lations [27] suggested that the ground state of the model
might be a valence-bond crystal, breaking the translational
symmetry of the kagome lattice, and this state has also been
supported by analytical arguments [28], by detailed cluster
calculations [29,30], by the multiscale entanglement
renormalization ansatz (MERA) [31], and by variational
Monte Carlo studies [32]. By contrast, different analytical
arguments [33] and extensive DMRG studies [34–36] have
all found the ground state to be a spin liquid with a finite
gap to triplet excitations; recent efforts to establish the
topological properties of this state [36,37] indicate that it is
the Z2 spin liquid known from quantum dimer models.
Other authors have suggested [38,39] that the ground state
is a gapless, algebraic quantum spin liquid. We comment
here that Poilblanc and coworkers [40–42] recently pro-
posed a PEPS-based trial wave function with resonating
valence-bond character specifically to study the Z2 spin-
liquid phase. Their wave function, which they found to
work very well for this model, is actually a 3-PESS
with D ¼ 3.
Before presenting our results, we discuss the calculation

of ground-state expectation values using the PESS wave
function. The calculation of the wave function, as detailed
in Secs. III and IVA, is a fully variational procedure and is
subject to a truncation error that can be made arbitrarily
small by reducing τ. To obtain an expectation value, we
project the wave function onto a MPS basis and calculate
the required quantities using the infinite time-evolving
block-decimation method [6]. While this procedure is
not variational, the error in this part of the calculation
may be obtained by systematic variation of the bond
dimension, DMPS, of the MPS basis. When more than 60
basis states are retained (DMPS > 60), the truncation error
due to the evaluation procedure is less than 10−4 for all of
the 3-PESS and 9-PESS results shown in Fig. 7; however, it
is somewhat higher for the 5-PESS, where it varies up to a
maximum of approximately 2 × 10−3 for D ¼ 13, even
with DMPS ¼ 140. We discuss this topic in further
detail below.
Our result for the ground-state energy per site, e0, of the

kagome Heisenberg antiferromagnet is shown in Fig. 7 as a
function of the bond dimensionD, for the 3-PESS, 5-PESS,
and 9-PESS representations (Fig. 5). As expected, the
ground-state energy falls with increasing D. In a gapped
system, the ground state should converge exponentially
with D. However, the energies we obtain have not yet
reached the exponentially converged regime for any of the
PESS representations, even forD ¼ 13. For this reason, we
do not attempt an extrapolation to the large-D limit because
the results would be of limited meaning with the available
data and may be subject to significant errors. We stress that
our result is variational, hence representing an upper energy
bound, and that this bound can clearly be lowered quite
significantly by further increasing D. We remind the reader

that our method is for a system that is infinite in size, with
truncation effected through D, and thus, our results set an
upper bound for e0 in the infinite two-dimensional limit.
This new bound is the value we obtain for the 9-PESS at
D ¼ 13, e0 ¼ −0.4364ð1ÞJ.
In fact, all PESS values for the ground-state energy already

lie lower than the energies of the proposed valence-bond-
crystal states [29–31], and the best energy obtained by
contractor renormalization [44], for D ¼ 7. Larger values
ofD are required before the PESS values fall below the upper
bound obtained by DMRG in Ref. [35]. While the trend is
clearly visible in Fig. 7, we have not yet been able to reach
values ofD sufficiently large that our calculated ground-state
energy falls below that obtained by the most sophisticated
variational projector quantum Monte Carlo calculations for
the gapless spin-liquid scenario (e0 ¼ −0.4365J) [39], from
the optimal extrapolated value in the most detailed higher-
order coupled-cluster approach (e0 ¼ −0.4372J) [43]
(which favors a gapped spin liquid), or the approximate
value estimated recently from DMRG calculations by
Depenbrock et al., e0 ¼ −0.4386ð5ÞJ [36]. This last esti-
mate may not be a true upper bound for e0 because it was
obtained by an extrapolation of DMRG results that continue
to show a quite significant finite-size oscillation.
Regarding the qualitative properties of the ground state

whose wave function we have deduced, we make a further
important comment concerning its symmetry. The 3-PESS

FIG. 7 The dependence on bond dimension D of the ground-
state energy of the S ¼ 1=2 kagome Heisenberg antiferromagnet
obtained using 3-PESS, 5-PESS, and 9-PESS tensor-network
representations. The upper bounds on the ground-state energy
obtained by a PEPS resonating valence-bond ansatz [40], MERA
[31], series-expansion methods based on valence-bond crystal
states [29,30], DMRG [35], Lanczos exact diagonalization and
variational Monte Carlo based on a gapless Dirac spin-liquid state
[39], and a higher-order coupled-cluster expansion [43], as well
as the DMRG result obtained by extrapolation [36], are shown for
comparison.
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and 9-PESS break the symmetry between up and down
triangles, while the 5-PESS breaks the threefold rotational
symmetry of the kagome lattice. We have studied the
energy differences produced in this way, and we illustrate
their evolution with both Trotter step size τ and MPS bond
dimension DMPS in Fig. 8 for the example of the up-down
asymmetry between triangles in the 3-PESS. This calcu-
lation also illustrates the nature of the truncation error in the
MPS calculation of expectation values, where the effects of
finite τ, D, and DMPS are interdependent. It is clear that the
energy difference tends to zero, restoring the symmetry of
the ground-state wave function, as τ → 0 at fixed D and
DMPS. This difference is in fact a direct measure of the
truncation error in the wave function, which is fully
controlled by τ. The inset indicates that symmetry restora-
tion is also approached in the asymptotic limit of large
DMPS, where again it is limited by the value of τ. Thus, we
can state with confidence that the lattice symmetries are
preserved in the true ground state. We expect that physical
quantities calculated from the PESS wave function, includ-
ing single-site magnetizations and single-bond spin corre-
lation functions, will show the same property of weak,
symmetry-broken differences tending to a uniform value in
the appropriate limits.
We remark again that our ground-state wave function is

obtained on the basis of the simple update approximation.
By adopting this procedure, we have essentially sacrificed a
precise accounting of the effects of the bond environment in
exchange for the accuracy inherent in accessing larger
values of the tensor dimension D. Such an approach
underestimates the long-range correlation (entanglement)

of the spins. To improve on this result, and to calculate the
correlation functions with the maximum accuracy available
within the PESS framework, one should perform a full-
update calculation, taking complete account of the bond
environment. We leave this generally very time-consuming
task for future study.

V. SUMMARY

We have introduced the PESS as a new class of
tensor-network states embodying the entanglement of
particles within a simplex. It is an exact tensor-network
representation of the simplex solid states first introduced
by Arovas [21]. We have demonstrated, using an SU(2)
simplex solid state for S ¼ 2 spins on the kagome lattice,
how to construct the PESS wave function and the parent
Hamiltonian. The discussion can be generalized to
SU(N) or other groups and to all lattice geometries.
PESS, together with PEPS, form a comprehensive

representation of tensor-network states that satisfy the area
law of entanglement entropy [20]. They arise naturally in
the context of constructing trial wave functions for quan-
tum systems on two- or higher-dimensional lattices. For a
wide variety of systems, PESS provide an efficient repre-
sentation of the exponential number of coefficients by a
small number of parameters describing the low-energy
physics of many-body quantum states arising from local
interactions. As for PEPS, PESS correlation functions are
short-ranged, and so results obtained with the PESS
representation should converge exponentially with increas-
ing bond dimension D for sufficiently large D in a gapped
system. For a translationally invariant system, the PESS
calculation is performed directly on an infinite lattice,
bypassing completely the errors inherent in extrapolations
from finite-size calculations.
PEPS and PESS are two types of trial wave function. In

systems where the correlation between pairs of neighboring
sites are strongest, such as an AKLT state, PEPS are
appropriate. If correlations among all the basis states in a
simplex or a larger cluster become important, then the
PESS representation is required. From our studies of the
spin-1=2 kagome Heisenberg antiferromagnet, the failure
of PEPS to converge, contrasted with the success of PESS,
indicates that the effects of frustration in the kagome
geometry are well accounted for by the entangled simplex
tensor Sabc. An underlying reason for the success of the
PESS wave function on the kagome lattice may be that it is
defined on the decorated honeycomb lattice, which is
geometrically unfrustrated. These observations suggest that
the problem of geometrical frustration in other lattices can
be similarly and approximately solved by finding a PESS
representation whose local tensors form an unfrustrated
lattice.
PESS are also superior to PEPS in that the orders of the

local tensors are reduced in certain lattices. A particular
example is the triangular lattice, where in the PEPS

FIG. 8 Energy difference between up and down triangles in the
3-PESS, shown for different bond dimensions D as a function of
Trotter step size τ. The dashed line shows the function τ2,
indicating that the energy difference vanishes in the limit τ → 0.
For higher values of D, calculations with higher values of DMPS
are required for full convergence. Inset: The dependence of the
energy difference on DMPS shows a rapid convergence to values
DMPS of order D2, followed by a slow convergence dictated by τ.
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representation the total number of tensor elements is dD6,
while in a PESS representation (Fig. 2), the two tensors
contain only D3 and dD3 elements. Still, a rigorous
evaluation of all local tensors in a PESS representation,
including the corresponding expectation values, requires a
trace over all indices. This is an exponentially difficult
problem and one that is not directly tractable for large
lattice systems, but approximate contraction schemes have
been devised to overcome this limitation. In the calculation
of expectation values, there is little difference between
PEPS and PESS; the methods developed for evaluating
expectation values based on PEPS can be extended
straightforwardly to PESS.
To determine the PESS wave function, we have intro-

duced a simple but efficient update approach based on
HOSVD. This is basically an entanglement mean-field
approach, which leads to a scalable variational method for
finding the local tensors. We have applied this method to
the spin-1=2 Heisenberg antiferromagnet on the kagome
lattice and obtained an excellent estimate of the ground-
state energy, e0 ¼ −0.4364ð1ÞJ (from the 9-PESS with
D ¼ 13). This very promising result can be further
improved by enlarging the order and the bond dimension
of the local tensors within the simple update scheme or,
more rigorously, by a full update of the bond environment
tensors. This latter step will allow one to evaluate accu-
rately the correlation functions and the entanglement
spectra. Efforts in this direction should help one to make
a definitive identification of the topological phase in the
ground state of the kagome Heisenberg model.
The PESS representation can be readily extended to

other lattices and other models. It provides a significant
advantage in studying the ground-state properties of quan-
tum lattice models on the triangular (Fig. 2), square (Fig. 3),
and other lattices because the order of the local tensors on
these lattices is much smaller than for the corresponding
PEPS. In particular, we believe that the PESS representa-
tion shown in Fig. 3(b) offers many advantages over PEPS
for studying the J1 − J2 antiferromagnetic Heisenberg
model on the square lattice [45–47]. Finally, by proceeding
as for the development of fermionic PEPS [48–51], the
PESS framework can also be extended to include fermionic
degrees of freedom.
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