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The Dirac and Klein-Gordon equations are solved on a space-time grid to study the strong-field induced

pair creation process for bosons and fermions from the vacuum. If the external field is sufficiently strong

to induce bound states that are embedded in the negative energy continuum, a complex scaling technique

of the Hamiltonian can predict the longtime behavior of the dynamics. In the case of multiple bound states

this technique predicts the occurrence of a new collective time scale. The longtime behavior of the pair

creation is not determined by a single (most important) channel, but collectively by the sum of all

individual widths of the embedded states.
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It has been predicted [1,2] that intense time-independent
external forces can break down the quantum vacuum and
create matter-antimatter pairs. Because of the possibility
of an experimental verification in the next few years, the
area of electron-positron creation in superstrong external
fields has become a topic of wide interest [3–9]. In the
asymptotically longtime limit [10], the number of created
particle pairs can either grow linearly, exponentially, or
approach (exponentially) a finite value depending on the
force configuration. Many theoretical works [11] have
studied the first regime, which occurs for fermions if the
corresponding potential that characterizes the field is infi-
nitely extended. Here the growth rate can be obtained
directly according to Hund’s formula [12] from the corre-
sponding transmission coefficient of the analogous quan-
tum mechanical scattering system. On the other hand, the
two exponential regimes are observed if the force field is
localized and able to capture the created particles. These
supercritical bound states can lead to an exponential growth
for bosons while for fermions their occupation is respon-
sible for the termination of the growth. In these regimes
Hund’s formula cannot be applied to predict the particle
yield.

The purpose of this Letter is twofold. First, we will show
that the complex coordinate scaling technique [13,14],
which is usually used to identify nonrelativistic metastable
states [15], can be generalized to predict also quantum field
theoretical (QFT) processes that involve the relativistic
formation of field-induced bound states. Second, in con-
trast to known decay or amplification processes of atomic
or molecular systems where the longtime behavior is usu-
ally predicted by only a single dominant (decay or ampli-
fication) channel, the longtime behavior of the quantum
field theoretical pair creation is described collectively in a

noncompeting way by the sum of all individual rates. For
example, in the case of bosonic exponential growth, the
exponent is proportional to the sum of the rates associated
with each bound state, and not—as one could expect—
associated with the bound state that has the largest indi-
vidual growth rate. We are not aware of any other physical
realization where a similar collective growth rate mecha-
nism characterizes the longtime behavior.
The complex scaling technique itself is a rather well-

established computational method for the quantum theory
of resonances to calculate the energies and lifetimes of
metastable states in atomic, molecular, and chemical sys-
tems. It is based on replacing the spatial coordinate x in the
Hamiltonian by a complex one, x expði�Þ, which rotates the
continuous part of the energy eigenspectrum into the com-
plex plane. It turns out that for a suitable chosen phase �,
the resulting (non-Hermitian) Hamiltonian can have square
integrable eigenstates whose complex eigenvalue describes
the energies (real part) and lifetime (inverse of the imagi-
nary part) of the underlying resonances. In this way each
resonance can be described separately by an individual
state of the scaled Hamiltonian rather than a collection of
many continuum states of the original Hamiltonian, neces-
sary for the QFT description of the quantum vacuum. As
each resonance is associated with its own characteristic
energy and lifetime, we could expect that the longtime
limit of any multiresonance fermion system is described
by that bound state that has the longest lifetime, corre-
sponding to the smallest imaginary part. However, we will
show that if this technique is applied to the pair-creation
process, in fact, each imaginary part contributes equally to
the longtime limit, independent of its magnitude.
In order to test the predictions of the complex scaling

technique, we have solved the Dirac equation (fermions)

PRL 111, 183204 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 NOVEMBER 2013

0031-9007=13=111(18)=183204(5) 183204-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.183204


and Klein-Gordon equation (bosons) for the quantum field
operator on a space-time grid. In the absence of any
external force, the continuous energy spectrum is charac-
terized by a mass gap extending from�c2 to c2 (in atomic
units). If the external binding potential is sufficiently
strong, the lowest lying discrete states originating from
positive energies can dive into the negative energy contin-
uum [16], as sketched in Fig. 1.

In early pioneering works [17] this ‘‘diving’’ of discrete
states into the negative energy continuum was associated
with the onset of pair creation, and the energy and the
width of the bound states were characterized using
Fano-Feshbach type techniques to model the transient
excitations induced by the nuclear motion in relativistic
heavy ion collisions. However, it is difficult to associate
these energy widths directly with any characteristic time
scale of the pair creation process. In this Letter, we show
that the sum of all of these individual energy widths
determines collectively the longtime behavior of pair
creation.

To have a concrete working model, we describe the
pair-creation dynamics for the fermions and bosons by
the one-dimensional Dirac Hamiltonian HD ¼ c�1px þ
�3c

2þVðxÞ and Klein-Gordon Hamiltonian [18,19]
HKG¼px

2ð�1þi�2Þ=2þ�3c
2þVðxÞ, respectively. Here

px is the momentum along the x axis, c denotes the speed
of light c � 137 a:u: and �i are the 2� 2 Pauli matrices.
Each state of the Hilbert space is represented by only two
spinor components. A reduction from four to only two
components is possible for the Dirac system as the potential
VðxÞ leaves the spin invariant and it is sufficient to focus
on only one spin state. The external field of extension
D is modeled by the scalar Sauter-like [1] potential
VðxÞ ¼ V0ðtanh½ðxþD=2Þ=W� � tanh½ðx�D=2Þ=W�Þ=2.
The strength V0 can be increased to control the number of
those discrete levels that have dived below the negative
energy continuum with energy E � �c2.

The energy density associated with HD is defined
here as �ðEiÞ ¼ ðjEi �Ei�1j�1 þ jEiþ1 �Eij�1Þ=2, where
Ei is the energy level on our numerical space-time grid.
The density �ðEÞ displayed in Fig. 2 for parameters
[W ¼ 0:3=c, D¼ 3:2=c, V0 ¼3:6c2] reveals two bound
states that are embedded in the negative energy continuum.
Their energies correspond to those locations [E1¼�2:16c2

and E2¼�1:33c2] where the density �ðEÞ is maximum.
The corresponding full widths of these peaks at 1, 2, and 3
quarters of the maximum are 0:007c2, 0:005c2, 0:003c2 for
E1 and 0:044c2, 0:029c2, and 0:016c2 for E2, consistently
suggesting that the time scales (related to the inverse
energy width) associated with each discrete state are rather
distinct and differ by a factor of 6. From this assessment
one could expect that the longtime dynamics should be
dominated by the state associated with energy E1.
However, quite remarkably, this prediction turns out to
be not true.
When we apply the complex scaling technique to our

Hamiltonian HD we find that among all the continuum
states, only the two complex energies E�

1 ¼ �2:159c2 �
i0:026c2 and E�

2 ¼ �1:363c2 � i0:156c2 take negative

imaginary parts, whose amounts we denote as �1 and �2.
It turns out that the real parts of these two complex energies
match within 3% with the centers of the two peaks of �ðEÞ
displayed in Fig. 2. Furthermore, the two imaginary parts
have a ratio of i0:026=i0:156 ¼ 1=6:0, in exact agreement
with the ratio observed from the analysis of energy density
of the real Hamiltonian as in Fig. 2. However, in contrast
to the energy density, which can only provide a ratio of the
widths, the complex scaling technique gives us also the
values for each ‘‘width’’ individually.
In order to examine the dynamical significance of the

sum of the two imaginary parts (�1þ�2¼ 0:182c2) we
have to calculate the time evolution of the number of
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FIG. 1. The energy spectrum as a function of the strength of
the external potential. For V0 > 2:42c2. the first discrete state has
‘‘dived’’ into the negative energy continuum. For V0 ¼ 3:6c2,
there are two discrete states (close to energies E2 �� 1:3c2 and
E1�� 2:1c2) embedded in the negative energy continuum.
[VðxÞ is given in the text, with W ¼ 0:3=c, D ¼ 3:2=c.]
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FIG. 2. Energy density �ðEÞ of the total (Hermitian)
Hamiltonian HD as a function of energy. Two bound states are
embedded in the Dirac Sea. The density is peaked at E1¼
�2:16c2 (with a peak height of 11 697) and E2¼�1:33c2

(peak height 5246). [W¼ 0:3=c and D¼3:2=c and V0¼3:6c2.]
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created particles NðtÞ. Following the usual procedure [20],
each single energy eigenstate of the negative energy con-
tinuum, defined by ðHD � VÞjni ¼ Enjni (with En��c2)
was evolved under the full Hamiltonian HD [with VðxÞ]
leading to jnðtÞi. The time evolution of these states was
obtained numerically on a discrete space-time grid using
the Fourier transformation based split-operator technique.
The average number NðtÞ of created particle pairs at time t
can then be calculated by summing over all the transition
matrix elements according to NðtÞ ¼ �p;njhpjnðtÞij2,
reflecting the transitions from the negative energy
‘‘Dirac sea’’ to states with positive energies, defined by
ðHD � VÞjpi ¼Epjpi (with c2 � Ep). The kinetic energy

spectrum of the created positrons, is then obtained
as PðEkÞ ¼ �pjhpjnðtÞij2, where Ek � �c2 � En and

En <�c2.
In Figure 3 we show the growth of the particle yield NðtÞ

for two strengths V0 of the external potential. There are
four distinct temporal regimes that describe NðtÞ. For very
early time NðtÞ grows NðtÞ ¼ �It

2. The corresponding
proportionality factor �I depends on how the potential is
turned on in time. For simplicity we have chosen here an
instant turn on. The temporal extension of the next time
regime [where NðtÞ ¼ �IIt] depends on the distance
between both wings of the potential � D. A separate
space-time resolved analysis showed that particles are
dominantly created close to the wings, where the corre-
sponding force [proportional to dVðxÞ=dx] is largest. In
this short time region (t < D=c) the particles created at
each wing do not have sufficient time to travel to the

opposite wing. The corresponding proportionality factor
�II could therefore be obtained from Hund’s rule [12]
applied to both wings independently of each other.
In the third time region (t > D=c) the electrons can visit
the opposite particle creation region and begin to reduce
the pair creation process due to Pauli blocking. We will
focus on this asymptotic longtime regime from now on. For
infinite times the pair creation comes to a complete halt
[21], reflected by the full occupation of each discrete
bound state.
The chosen potential strengths V0 in the figure lead to

one and two bound states. As a result NðtÞ approaches 1.2
and 2.24. The deviation from the expected integer value
(associated with fully occupied discrete states for one spin)
is due to the additional contribution (0.2 and 0.24, respec-
tively) due to the turn on. Independent simulations suggest
that this contribution can be minimized by turning the
potential on adiabatically.
To obtain a more detailed insight into the functional

dependence of NðtÞ on t, we have graphed in the inset of
Fig 3 the difference from its asymptotic value nðtÞ �
Nðt ! 1Þ � NðtÞ. The straight lines on the logarithmic
axis show that the longtime limit of the pair creation can
be described by a single-exponential behavior, NðtÞ ¼
B½1� expð��BtÞ�, where B is the number of discrete
bound states. For V0 ¼ 2:66c2 (single bound state) the
exponent is �1 ¼ 0:08602c2, which agrees with an error
of less than 7% with the amount of the imaginary part of
the corresponding complex energy for these parameters.
For the more interesting case (V0 ¼ 3:6c2 leading to two

bound states) the slope is �2 ¼ 0:17247c2. This longtime
exponent agrees, with an error of less than 5%, with
the sum of the two imaginary parts, �1 þ �2 ¼ 0:182c2,
and not—as one could expect—with only the smaller one
�1ð¼ 0:026c2Þ associated with the longest lifetime. In our
view, this noncompetitive behavior is rather unusual for
linear quantum field theoretical systems where typically
amplitudes need to be added up (and not multiplied) to
obtain physically meaningful quantities.
Both curves are numerically converged but contain simi-

lar oscillatory structures, which might be due to the sudden
turn-on. They are not so pronounced in nðtÞ for V0 ¼
2:66c2 as NðtÞ reaches the steady state at later times and
therefore the relative difference to the steady state value
[denoted by nðtÞ] is larger for graph B than for A.
To obtain some additional insight into the time scales we

have displayed in Fig. 4 the corresponding kinetic energy
spectrum of the created positrons. While most of the
created electrons are trapped in the two bound states, the
potential is repulsive for the associated positrons and ejects
them to infinity. The corresponding energy spectrum of
the positrons is also doubly peaked, with the two maxima
at energies �c2 �E1;2, where E1;2 match the real parts of

the complex energies. While the locations of the peaks
have a direct correspondence with the peak positions of
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FIG. 3. The final number of created particles as a function of
the interaction time for fermions with (A) V0 ¼ 3:6c2 and (B)
V0 ¼ 2:66c2. The inset presents nðtÞ � Nðt ! 1Þ � NðtÞ for
longer times with a logarithmic y axis. The slopes of the matched
straight lines are �0:08602c2 and �0:17247c2. [The other
parameters are W ¼ 0:3=c and D ¼ 3:2=c.]
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the density �ðEÞ, the widths of the peaks, on the other hand,
are nearly identical to each other and obviously do not
differ by a factor of 6. In fact, the full width at half
maximum of both peaks is close to 0:18c2, suggesting
that the positron yield grows at this rate.

In order to test the generality of these findings also for
particles with spin zero, we have repeated each of the
above simulations for the bosonic pair creation based on
the Klein-Gordon Hamiltonian HKG. In contrast to the
fermionic Pauli-exclusion principle, which shuts off the
fermionic pair creation, the occupation of the bound states
has exactly the opposite effect on the pair creation for
bosons. Bosons that return to the potential regions where
they have been created are able to amplify the pair creation
process [22]. As a result the creation yield grows exponen-
tially. Once again we would normally expect that only the
bound state with the largest imaginary part (amplification
rate) should dominate the longtime exponential growth.
However, this is again not true.

We have performed the simulation for a potential VðxÞ
[with V0 ¼ 3:7c2, W ¼ 0:3=c, D ¼ 3:2=c] that leads to
three bound states in the negative energy continuum. The
complex scaling technique applied to these parameters
predicts the three complex energies E�

1 ¼ �2:378c2 �
i0:076c2, E�

2¼�1:727c2�i0:138c2, and E�
3¼�1:011c2�

i0:057c2. The real parts match again the maxima of the
corresponding energy density �ðEÞ and predict the locations
of the three peaks in the kinetic energy spectrum of the
ejected antibosons. More importantly, the numerically
observed yield grows here like NðtÞ � expð0:268c2tÞ. This
exponent agrees almost perfectly (with a deviation of less
than 1%) with the sum of all three imaginary parts
(0:271c2), and not just with the largest one, which has the
distinctively different value of 0:138c2.

These findings raise also several interesting questions.
For example, the imaginary parts predict both an expo-
nential growth for bosons and an asymptotic approach to

a constant yield for fermions. A general analytical the-
ory that predicts this universal behavior is still lacking.
There could be a deeper connection with the ‘‘quasibo-
sonic’’ approximation [23] that leads to a Poisson
distribution for the probabilities to produce N particle
pairs. If we tentatively assume that the decay channels
are independent of each other, then the probability for
the vacuum not to decay is equal to the product of the
individual probabilities of not decaying through a par-
ticular channel [24]. If these individual survival proba-
bilities are assumed to be exponentials, we would
expect that the rate associated with the vacuum survival
probability is indeed given by the sum of the indivi-
dual exponents, as we observe. It is even challenging to
model the population growth on a purely phenomeno-
logical level by simple nonlinear rate equations, to pre-
dict the collective decay or amplification correctly. Also
the relationship between the eigenvectors of the complex
coordinate scaled system and the bound states for the
trapped particles of the original Hermitian Hamiltonian
is of interest.
In contrast to common pair creation scenarios (such as

potential steps) where the permanent pair creation is usu-
ally associated with a degeneracy of energy continua, in
our case the pair creation is related to the degeneracy
between one (or several) discrete states and the continuum.
This situation can occur if the associated external electric
field can bind either an electron or positron. For example,
the latter can be realized by a superstrong nuclear Coulomb
field characteristic of two colliding high-Z ions, where
more than just a single bound state can become degenerate
with the continuum.
In summary, we have shown that the method based on

non-Hermitian Hamiltonians can be generalized to quan-
tum field theory to predict the fermionic as well as the
bosonic pair creation yield in a regime, where the external
field can induce supercritical bound states. In contrast to a
competitive dynamics, the time scale for the longtime
behavior is given by the sum of the imaginary parts of
those complex energies, whose imaginary part is negative
(associated with bound states). As the complex scaling
technique requires the diagonalization of the correspond-
ing quantum mechanical (and not field theoretical)
Hamiltonian, it can be rather efficiently applied to a wide
variety of external field configurations. For example, it
could be even applied to study the role of transiently
induced discrete states [25].
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FIG. 4. The positron emission spectrum as a function of
the kinetic energy Ek. [Same parameters as in Fig. 1 and T ¼
5:7� 10�3 a:u:]
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