
Chern Semimetal and the Quantized Anomalous Hall Effect inHgCr2Se4

Gang Xu, Hongming Weng, Zhijun Wang, Xi Dai, and Zhong Fang*

Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
(Received 4 July 2011; published 27 October 2011)

In 3D momentum space, a topological phase boundary separating the Chern insulating layers from

normal insulating layers may exist, where the gap must be closed, resulting in a ‘‘Chern semimetal’’ state

with topologically unavoidable band crossings at the Fermi level. This state is a condensed-matter

realization of Weyl fermions in ð3þ 1ÞD, and should exhibit remarkable features, such as magnetic

monopoles and Fermi arcs. Here we predict, based on first principles calculations, that such a novel

quantum state can be realized in a known ferromagnetic compound HgCr2Se4, with a single pair of Weyl

fermions separated in momentum space. The quantum Hall effect without an external magnetic field can

be achieved in its quantum-well structure.
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Under broken time reversal symmetry, the topological
phases of two-dimensional (2D) insulators can be charac-
terized by an integer invariant, called Chern number [1],
which is also known as the TKNN number [2] or the
number of chiral edge states [3] in the context of the
quantum Hall effect. 2D insulators can thus be classified
as normal insulators or Chern insulators depending on
whether or not the Chern number vanishes. Since the
Chern invariant is defined only for 2D insulators, it is
natural to ask, what is its analog in 3D? Starting from a
2D Chern insulating plane (say at kz ¼ 0), and considering
its evolution as a function of kz, generally two situations
may happen. If the dispersion along kz is weak, such that
the Chern number remains unchanged, the system can be
viewed as the simple stacking of 2D Chern insulating
layers along the z direction. Such 3D Chern insulators
are trivial generalization of the Chern number to 3D, which
is quite similar to the weak topological insulators in sys-
tems with time reversal symmetry. However, if the disper-
sion along kz is strong, such that Chern number changes as
the function of kz, the system will be in a nontrivial semi-
metal state with ‘‘topologically unavoidable’’ band cross-
ings located at the phase boundary separating the

insulating layers in ~k space with different Chern numbers
[4,5]. This is due to the fact that the change of Chern
number corresponds to a topological phase transition,
which can happen only if the gap is closed. From the
Kohn-Luttinger theorem, we can always expect that the
band crossings appear at the Fermi level at stoichiometry.

This Chern semimetal state, if found to exist, can be
regarded as a condensed-matter realization of ð3þ 1ÞD
chiral fermions (or called Weyl fermions) in the relativistic
quantum field theory, where the field can be described by
the 2-component Weyl spinors [6] (either left- or right-
handed), which are half of the Dirac spinors and must
appear in pairs. The band crossing points or Weyl nodes

are topological objects in the following senses. First, since
no mass is allowed in the 2� 2 Hamiltonian, the Weyl
nodes should be locally stable and can only be removed

when a pair of Weyl nodes meet together in the ~k space.
Second, the Weyl nodes are ‘‘topological defects’’ of the
gauge field associated with the Berry’s curvature in mo-
mentum space [7–9]. The gauge field around the neighbor-
hood of the Weyl node must be singularly enhanced, and
behaves like a magnetic field originating from a magnetic
monopole [8]. The physical consequence of such a gauge
field has been discussed in the context of the anomalous
Hall effect [7,8,10] observed in ferromagnetic (FM) met-
als, where the Weyl nodes, if any, are always submerged by
the complicated band structures.
In this Chern semimetal state, we may also expect un-

usual features like nonclosed Fermi surfaces (Fermi arcs)
on the side surfaces. The possible Fermi arcs have been
recently discussed from a view point of accidental degen-
eracy, and prospected for noncollinear antiferromagnetic
pyrochlore iridates [11] by the fine-tuning of electron
correlation U. Since the correct U and the real magnetic
ordering is still unknown, we have to wait for its material
realization. In this Letter, we will show that such a novel
Chern semimetal state is actually realized as the ground
state of a known FMmaterial HgCr2Se4, with only a single
pair of Weyl nodes separated in the momentum space. We
further find that the long-pursuing quantized anomalous
Hall effect (QAHE) [12–15], i.e., the quantum Hall effect
without an external magnetic field, can be achieved in the
quantum-well structure of HgCr2Se4.
HgCr2Se4 is a FM spinel exhibiting large coupling

effects between electronic and magnetic properties [16].
It shows novel properties like giant magnetoresistance
[17], anomalous Hall effect [18], and the red shift of the
optical absorption edge [19]. Its Curie temperature Tc

is high (around 106–120 K), and its saturated moment
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is 5:64�B=f:u: [20,21], approaching the atomic value
expected for high-spin Cr3þ. Its transport behavior is
different from other FM chalcogenide spinels, like
CdCr2Se4 and CdCr2S4, which are clearly semiconducting.
HgCr2Se4 exhibits a semiconducting character in the para-
magnetic state but a metallic state in the low temperature
FM phase [17,22,23]. The spinel structure (space group
Fd�3m) can be related to the zinc blende and diamond
structures in the following way. If we treat the Cr2Se4
cluster as a single pseudoatom (called X) located at its
mass center, then the HgX sublattice forms a zinc blende
structure. There are two HgX sublattices in each unit cell,
and they are connected by the inversion symmetry similar
to the two atoms in the diamond structure. The pseudoatom
X is actually a small cube formed by Cr and Se atoms
located at the cube corners. The cubes are connected by
corner sharing the Cr atoms. As a result, each Cr atom is
octahedrally coordinated by the 6 nearest Se atoms.

Our first principles calculations [24] confirm that the
FM solution is considerably (2:8 eV=f:u:) more stable
than the nonmagnetic solution, and the calculated mo-
ment (6:0�B=f:u) is in good agreement with experi-
ments [20,21]. The electronic structures shown in
Figs. 1(a) and 1(b) suggest that the system can be approxi-
mately characterized as a ‘‘zero-gap half metal’’ in the case
without spin-orbit coupling (SOC). It is almost a half metal
because of the presence of a gap in the up-spin channel just
above the Fermi level; it is nearly zero-gapped because of
the band-touching around the � point just below the Fermi
level in the down spin channel. The 3d states of Cr3þ are
strongly spin polarized, resulting in the configuration

t3"2ge
0"
g t

0#
2ge

0#
g . The octahedral crystal field surrounding Cr

atoms is strong and opens up a band gap between the t3"2g
and e0"g manifolds. The Se-4p states (located from about
�6 to 0 eV) are almost fully occupied and contribute to the
valence band top dominantly. Because of the hybridization
with Cr-3d states, the Se-4p are slightly spin polarized but
with an opposite moment (about �0:08�B=Se). The zero-
gap behavior in the down spin channel is the most impor-
tant character here [Fig. 1(b)], because it suggests the
inverted band structure around the � point, similar to the
case of HgSe or HgTe [25,26].
The four low energy states (8 after considering spin) at

the � point can be identified as jPxi, jPyi, jPzi, and jSi,
which are linear combinations of atomic orbitals [27].
Considering these 4 states as bases, we now recover the
same situation as HgSe or HgTe, and the only difference is
the presence of exchange splitting in our case. Here the
band inversion [see Fig. 1(c), jS; #i is lower than jP; #i] is
due to the following two factors. First, the Hg-5d states are
very shallow [located at about �7:0 eV, Fig. 1(a)] and its
hybridization with Se-4p states will push the antibonding
Se-4p states higher, similar to HgSe. In addition to that, the
hybridization between unoccupied Cr-3d# and Hg-6s#
states in the down spin channel will push the Hg-6s# state
lower in energy [Figs. 1(b) and 1(c)]. As a result, the jS; #i
is about 0.4 eV lower than the jP; #i states, and it is further
enhanced to be 0.55 eV in the presence of SOC. We have to
be aware of the correlation effect beyond the generalized
gradient approximation (GGA), because the higher the
Cr-3d# states, the weaker the hybridization with Hg-6s#.
It has been shown that semiconducting CdCr2S4 and
CdCr2Se4 can be well described by the LDAþU calcu-
lations with effective U around 3.0 eV [28,29]. We have
performed the same LDAþU calculations for HgCr2Se4
and found that the band inversion remains unless the U is
unreasonably large (> 8:0 eV). The experimental observa-
tions of metallic behavior at low temperature for all kinds
of samples [17,22,23] are strong supports to our conclusion
for the inverted band structure.
In the presence of SOC, the new low energy eigenstates

at � are given as j 32 ;� 3
2i, j 32 ;� 1

2i, j 12 ;� 1
2i, and jS;� 1

2i,
which can be constructed from the jPi and jSi states [30],
similar to HgSe again. Now, because of the exchange
splitting in our case, the eight states at � are all energeti-
cally separated, with the j 32 ; 32i having the highest energy,

and the jS;� 1
2i having the lowest. Because of the band

inversion, several band crossings are observed, as shown in
the band structure [Fig. 1(d)]. Among them, however, only
two kinds of band crossings (called A and B) are important
for the states very close to the Fermi level. The crossing A
gives two points located at kz ¼ �kcz along the �� Z line,
and the trajectory of crossing B is a closed loop surround-
ing the � point in the kz ¼ 0 plane, as schematically shown
in Fig. 2(a). For the 2D planes with fixed kz (kz � 0 and
kz � �kcz), the band structures are all gapped (in the sense

(a)

(b)

(c)

(d)

FIG. 1 (color online). Electronic structures of HgCr2Se4.
(a) The total and partial density of states (DOS); (b) The band
structures without SOC (showing the up and down spin parts
separately); (c) The schematic understanding for the band in-
version, where the jSi state is lower than the jPi states in the
down spin channel; (d) The band structure after including SOC
[with majority spin aligning to the (001) direction]. The low
energy states at � are indicated as explained in the main text.
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that we can define a curved Fermi level). We can therefore
evaluate its Chern number C for each kz-fixed plane. We
found that C ¼ 0 for the planes with kz <�kcz or kz > kcz ,
while C ¼ 2 for the planes with �kcz < kz < kcz and
kz � 0. We therefore conclude that the crossing A located
at the phase boundary between C ¼ 2 and C ¼ 0 planes
(i.e, at kz ¼ �kcz) are topologically unavoidable Weyl
nodes as addressed at the beginning. On the other hand,
however, the crossing B (i.e., the closed loop in kz ¼ 0
plane) is just accidental and it is due to the presence of
crystal mirror symmetry with respect to the kz ¼ 0 plane.
The crossing B is not as stable as crossing A in the sense
that it can be eliminated by changing the crystal symmetry.

Using the 8 eigenstates at �, we can construct an 8� 8
effective k � p Kane-Hamiltonian [30]. For qualitative
understanding, however, we can downfold the 8� 8
Hamiltonian into a simplest 2� 2 model by considering
the two bases j 32 ; 32i and jS;� 1

2i which catch the band-

inversion nature.

Heff ¼ M Dkzk
2�

Dkzk
2þ �M

� �
; (1)

here k� ¼ kx � iky, and M ¼ M0 � �k2 is the mass term

expanded to the second order, with parametersM0 > 0 and
�> 0 to ensure band inversion. Since the two bases have
opposite parity, the off-diagonal element has to be odd in k.
In addition, the k2� has to appear to conserve the angular
moment along the z direction. Therefore, to the leading
order, the kzk

2� is the only possible form for the off-

diagonal element. Evaluating the eigenvalues EðkÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þD2k2zðk2x þ k2yÞ2

q
, we get two gapless solutions:

one is the degenerate points along the �� Z line with

kz ¼ �kcz ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=�

p
; the other is a circle around the �

point in the kz ¼ 0 plane determined from the equation
k2x þ k2y ¼ M0=�. They are exactly the band crossings

obtained from our first-principles calculations. Because
of the presence of k2� in the off-diagonal element [31], it
is easy to check that Chern number C equals 2 for the
planes with �kcz < kz < kcz and kz � 0. The band disper-
sions near the Weyl nodes at the kz ¼ �kcz plane [Fig. 2(c)]
are thus quadratic rather than linear, with a chiral in-plane
spin texture [shown in the inset of Fig. 2(c)]. The twoWeyl
nodes located at �kcz have opposite chirality due to the
opposite sign of the mass term, and they form a single pair

of magnetic monopoles carrying the gauge flux in ~k space
as shown in Fig. 2(d). The band crossing loop in the kz ¼ 0
plane is not topologically unavoidable; however, its exis-
tence requires that all gauge flux in the kz ¼ 0 plane
(except the loop itself) must be zero.
This Chern semimetal state realized in HgCr2Se4 will

lead to novel physical consequences, which can be mea-
sured experimentally. First, each kz-fixed plane with a
nonzero Chern number can be regarded as a 2D Chern
insulator, and there must be chiral edge states for such
plane if an edge is created. The number of edge states is
two for the case of C ¼ 2 [see Fig. 3(a)], or zero for the
case of C ¼ 0. If the chemical potential is located within
the gap, only the chiral edge states can contribute to the
Fermi surface, which are isolated points for each Chern
insulating plane but nothing for the plane with C ¼ 0.
Therefore, the trajectory of such points in the ðkx; kzÞ
surface or ðky; kzÞ surface form nonclosed Fermi

arcs, which can be measured by ARPES. As shown in
Fig. 3(b), the Fermi arcs end at kz ¼ �kcz , and are inter-
rupted by the kz ¼ 0 plane. This is very different from
conventional metals, where the Fermi surfaces must be
either closed or interrupted by the Brillouin zone boundary.
The possible Fermi arcs have been recently discussed from
a viewpoint of accidental degeneracy for pyrochlore iri-

FIG. 2 (color online). Weyl nodes and gauge flux in HgCr2Se4
(a) The band crossing points in the ~k space; (b) The Chern
number as function of kz; (c) The schematic plot of the band
dispersion around the Weyl nodes in the kz ¼ �kcz plane, the
inset shows the chiral spin texture; (d) The gauge flux evaluated
as Berry curvature in the ðkx; kzÞ plane.

FIG. 3 (color online). Edge states and Fermi arcs of HgCr2Se4
[30]. (a) The edge states for the plane with kz ¼ 0:06�. A ribbon
with two edges is used, and there are two edge states for each
edge (because C ¼ 2). The states located at different edges are
indicated by different line types. (b) The calculated Fermi arcs
for the ðky; kzÞ side surface.
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dates [11]. Nevertheless, for the Chern semimetal state, the
Fermi arcs should be more stable because the band cross-
ings are topologically unavoidable.

The QAHE, on the other hand, is a unique physical
consequence characterizing the Chern semimetal nature
of HgCr2Se4, by considering its quantum-well structure.
For 2D Chern insulators, the transverse Hall conductance

should be quantized as �xy ¼ C e2

h , where C is the Chern

number. Such a quantum Hall effect without a magnetic
field has been long pursued [12,13,15] but never achieved
experimentally. In HgCr2Se4, considering the kz-fixed
planes, the Chern number C is nonzero for limited regions
of kz, and this is due to the band inversion around �
as discussed above. In the quantum-well structure,
however, those low energy states around� should be further
quantized into subbands (labeled as jHni and jEni for
hole and electron subbands, respectively), whose energy
levels change as a function of film thickness. As shown in
Fig. 4(a), when the thickness of the film is thin enough,
the band inversion in the bulk band structure will be re-
moved entirely by the finite size effect. With the increment
of the film thickness, finite size effect is getting weaker and
the band inversion among these subbands restores subse-
quently, which leads to jumps in the Chern number or the
Hall coefficient�xy [14]. As shown in Fig. 4(b), if the film is

thinner than 21 Å (about 2 lattice constants), the �xy is

zero; once the film thickness is larger than the critical
thickness, we find subsequent jumps of �xy in unit of

2e2=h. In fact, the strong anomalous Hall effect has been
observed for the bulk samples of HgCr2Se4 [18]. This is in
sharp contrast with pyrochlore iridates, where the anoma-
lous Hall effect should be vanishing due to the AF ordering.
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�i@@x and using the open boundary condition, we can
diagonalize the Hamiltonian for each fixed kz and obtain
the edge states. If we consider the open boundary condi-

tion along the z direction, using the same strategy, we
can evaluate the Hall conductance in the quantum-well
structure. The QAHE is further confirmed by tight-binding
calculations constructed from maximally localized
Wannier functions.
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