Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014

Stochastic series expansion (SSE) and ground-state projection

Anders W Sandvik, Boston University

Review article on quantum spin systems and numerical methods: ArXiv:1101.3281

Stochastic Series expansion (SSE): S=1/2 Heisenberg model

Write H as a bond sum for arbitrary lattice

$$H = J \sum_{b=1}^{N_b} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},$$

Diagonal (1) and off-diagonal (2) bond operators

 $H_{1,b} = \frac{1}{4} - S_{i(b)}^{z} S_{j(b)}^{z},$ $H_{2,b} = \frac{1}{2} (S_{i(b)}^{+} S_{j(b)}^{-} + S_{i(b)}^{-} S_{j(b)}^{+}).$ $H = -J \sum_{b=1}^{N_{b}} (H_{1,b} - H_{2,b}) + \frac{JN_{b}}{4}$

Four non-zero matrix elements

 $\langle \uparrow_{i(b)} \downarrow_{j(b)} | H_{1,b} | \uparrow_{i(b)} \downarrow_{j(b)} \rangle = \frac{1}{2} \qquad \langle \downarrow_{i(b)} \uparrow_{j(b)} | H_{2,b} | \uparrow_{i(b)} \downarrow_{j(b)} \rangle = \frac{1}{2}$ $\langle \downarrow_{i(b)} \uparrow_{j(b)} | H_{1,b} | \downarrow_{i(b)} \uparrow_{j(b)} \rangle = \frac{1}{2} \qquad \langle \uparrow_{i(b)} \downarrow_{j(b)} | H_{2,b} | \downarrow_{i(b)} \uparrow_{j(b)} \rangle = \frac{1}{2}$

Partition function

$$Z = \sum_{\alpha} \sum_{n=0}^{\infty} (-1)^{n_2} \frac{\beta^n}{n!} \sum_{S_n} \left\langle \alpha \left| \prod_{p=0}^{n-1} H_{a(p),b(p)} \right| \alpha \right\rangle$$

 n_2 = number of a(i)=2 (off-diagonal operators) in the sequence

Index sequence: $S_n = [a(0), b(0)], [a(1), b(1)], \dots, [a(n-1), b(n-1)]$

2D square lattice bond and site labels

SSE effectively provides a discrete representation of the time continuum

computational advantage; only integer operations in sampling

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

2

0

0

	Τ
•	0
0	
Ī	Ĩ
0	1

2 3

	р	v X(v)	v X(v)	v X(v)	v X(v)	
	11	44 18	45 30	46 16	47 17	
	10	40 -	41 -	42 -	43 -	X() = vertex list
	9	36 31	37 7	38 4	39 5	
	8	32 14	33 15	34 12	35 0	• operator at $p \rightarrow X(v)$
	7	28 19	29 6	30 45	31 36	v=4p+l, l=0,1,2,3
	6	24 -	25 -	26 -	27 -	• links to next and
	5	20 -	21 -	22 -	23 -	previous leg
	4	16 46	17 47	18 44	19 28	
	3	12 34	13 2	14 32	15 33	
	2	8 -	9 -	10 -	11 -	
	1	4 38	5 39	6 29	7 37	
	0	0 35	1 3	2 13	3 1	
		l=0	l=1	l=2	l=3	

Spin states between operations are redundant; represented by linksnetwork of linked vertices will be used for loop updates of vertices/operators

Monte Carlo sampling scheme

Change the configuration;
$$(\alpha, S_L) \to (\alpha', S'_L)$$
 $W(\alpha, S_L) = \left(\frac{\beta}{2}\right)^n \frac{(L-n)!}{L!}$
 $P_{\text{accept}} = \min \left[\frac{W(\alpha', S_L)}{W(\alpha, S_L)} \frac{P_{\text{select}}(\alpha', S'_L \to \alpha, S_L)}{P_{\text{select}}(\alpha, S_L \to \alpha', S'_L)}, 1\right]$
Diagonal update: $[0, 0]_p \leftrightarrow [1, b]_p$

Attempt at p=0,...,L-1. Need to know $|\alpha(p)\rangle$ • generate by flipping spins when off-diagonal operator

$$P_{\text{select}}(a = 0 \to a = 1) = 1/N_b, \quad (b \in \{1, \dots, N_b\})$$

 $P_{\text{select}}(a = 1 \to a = 0) = 1$

$$\frac{W(a=1)}{W(a=0)} = \frac{\beta/2}{L-n} \qquad \frac{W(a=0)}{W(a=1)} = \frac{L-n+1}{\beta/2}$$

Acceptance probabilities

$$P_{\text{accept}}([0,0] \to [1,b]) = \min\left[\frac{\beta N_b}{2(L-n)}, 1\right]$$
$$P_{\text{accept}}([1,b] \to [0,0]) = \min\left[\frac{2(L-n+1)}{\beta N_b}, 1\right]$$

0 0 0 0 0 0

n is the current power

• n
$$\rightarrow$$
 n+1 (a=0 \rightarrow a=1)

• n \rightarrow n-1 (a=1 \rightarrow a=0)

Off-diagonal updates

Local update

Change the type of two operators

- constraints
- inefficient
- cannot change winding numbers

Operator-loop update

- Many spins and operators can be changed simultaneously
- can change winding numbers

Determination of the cut-off L

- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n
increase L if n is close to current L

• e.g., *L=n+n/3*

Example •16×16 system, β =16 \Rightarrow 6000 $n_{\rm max}$ evolution of L 5000 n distribution after equilibration 4000 0.006 truncation is no approximation 2 0.005 3000 0.004 (*u*) 0.003 2000 0.002 0.001 1000 4800 4600 5000 n 50 100 150 200 250 MC sweeps

Does it work? Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow \times$

- SSE results from 10¹⁰ sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

⇐ Energy for long 1D chains

- SSE results for 10⁶ sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit (T→0)

2D Heisenberg SSE code on line

https://physics.bu.edu/~sandvik/programs/

Valence bonds and Ground State Projection

The valence bond basis for S=1/2 spins

Valence-bonds between sublattice A, B sites $(i, j) = (|\uparrow_i\downarrow_j\rangle - |\downarrow_i\uparrow_j\rangle)/\sqrt{2}$ Basis states; singlet products

 $|V_r\rangle = \prod_{b=1}^{N/2} (i_{rb}, j_{rb}), \quad r = 1, \dots (N/2)!$

The valence bond basis is overcomplete and non-orthogonal • expansion of arbitrary singlet state is not unique

 $|\Psi
angle = \sum_{r} f_r |V_r
angle$ (all fr positive for non-frustrated system)

All valence bond states overlap with each other

 $\langle V_l | V_r \rangle = 2^{N_{\circ} - N/2}$ $N_{\circ} =$ number of loops in overlap graph

Spin correlations from loop structure

 $\frac{\langle V_l | \vec{S}_i \cdot \vec{S}_j | V_r \rangle}{\langle V_l | V_r \rangle} = \begin{cases} \frac{3}{4} (-1)^{x_i - x_j + y_i - y_j} & \text{(i,j in same loop)} \\ 0 & \text{(i,j in different loops)} \end{cases}$

More complicated matrix elements (e.g., dimer correlations) are also related to the loop structure K.S.D. Beach and A.W.S.,

Nucl. Phys. B 750, 142 (2006)

B

Projector Monte Carlo in the valence-bond basis

Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(-H)ⁿ projects out the ground state from an arbitrary state

 $(-H)^n |\Psi\rangle = (-H)^n \sum_i c_i |i\rangle \to c_0 (-E_0)^n |0\rangle$

S=1/2 Heisenberg model

$$H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j = -\sum_{\langle i,j \rangle} H_{ij}, \quad H_{ij} = \left(\frac{1}{4} - \vec{S}_i \cdot \vec{S}_j\right)$$

Project with string of bond operators

 $\sum_{\{H_{ij}\}} \prod_{p=1}^{n} H_{i(p)j(p)} |\Psi\rangle \to r |0\rangle \qquad (r = irrelevant)$

Action of bond operators

$$H_{ab}|...(a,b)...(c,d)...\rangle = |...(a,b)...(c,d)...\rangle$$
$$H_{bc}|...(a,b)...(c,d)...\rangle = \frac{1}{2}|...(c,b)...(a,d)...\rangle$$

Simple reconfiguration of bonds (or no change; diagonal)

- no minus signs for A→B bond 'direction' convetion
- sign problem does appear for frustrated systems

Expectation values: $\langle A \rangle = \langle 0 | A | 0 \rangle$

Strings of singlet projectors

 $P_k = \prod_{p=1}^{n} H_{i_k(p)j_k(p)}, \quad k = 1, \dots, N_b^n \quad (N_b = \text{number of interaction bonds})$

We have to project bra and ket states

$$\sum_{k} P_{k} |V_{r}\rangle = \sum_{k} W_{kr} |V_{r}(k)\rangle \rightarrow (-E_{0})^{n} c_{0} |0\rangle$$
$$\sum_{g} \langle V_{l} | P_{g}^{*} = \sum_{g} \langle V_{l}(g) | W_{gl} \rightarrow \langle 0 | c_{0} (-E_{0})^{n}$$

6-spin chain example:

$$\langle A \rangle = \frac{\sum_{g,k} \langle V_l | P_g^* A P_k | V_r \rangle}{\sum_{g,k} \langle V_l | P_g^* P_k | V_r \rangle}$$

$$= \frac{\sum_{g,k} W_{gl} W_{kr} \langle V_l(g) | A | V_r(k) \rangle}{\sum_{g,k} W_{gl} W_{kr} \langle V_l(g) | V_r(k) \rangle}$$

- Monte Carlo sampling of operator strings
- Estimators based on transition graphs

More efficient ground state QMC algorithm → larger lattices Loop updates in the valence-bond basis

AWS and H. G. Evertz, PRB 2010

Put the spins back in a way compatible with the valence bonds

 $(a_i, b_i) = (\uparrow_i \downarrow_j - \downarrow_i \uparrow_j) / \sqrt{2}$

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods (world-line and stochastic series expansion methods)

- good valence-bond trial wave functions can be used
- larger systems accessible
- sample spins, but measure using the valence bonds

T>0 and T=0 algorithms side-by-side

Finite-temperature QMC

(world lines, SSE,...)

periodic time boundary conditions

Computer implementations similar

open boundaries capped by valence bonds (2-spin singlets) [AWS, HG Evertz, 2010]

Trial state can conserve relevant ground state quantum numbers (S=0, k=0,...)

Starting point: S=1/2 antiferromagnetic Heisenberg model

Sublattice magnetization

 $\vec{m}_s = \frac{1}{N} \sum_{i=1}^{N} \phi_i \vec{S}_i, \quad \phi_i = (-1)^{x_i + y_i}$ (2D square lattice)

Long-range order: $<m_s^2 > > 0$ for $N \rightarrow \infty$

Quantum Monte Carlo

- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young 1988

 $m_s = 0.30(2)$

 $\approx 60~\%$ of classical value

AWS & HG Evertz 2010

 $m_s = 0.30743(1)$

L×L lattices up to 256×256 , T=0

0.03

1/L

0.04

0.05

0.06

0.01

0.02